Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively
in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2.
Note: m and n will be at most 100.
Analysis:
there is a little difference with the Unique Paths
DP functions
dp[i]][j] = dp[i-1][j]+dp[i][j-1] if obstacle[i][j] == 0
= 0 if obstacle[i][j] == 1
java
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid[0][0] ==1) return 0;
int m = obstacleGrid.length;
int n = obstacleGrid[0].length;
int[] step = new int[n];
step[0] = 1;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(obstacleGrid[i][j]==1)
step[j] = 0;
else if(j>0){
step[j] = step[j-1]+step[j];
}
}
}
return step[n-1];
}c++
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size();
if(m==0) return 0;
int n = obstacleGrid[0].size();
if(obstacleGrid[0][0] == 1) return 0;
vector<int> maxpath(n,0);
maxpath[0] = 1;
for(int i=0; i< m; i++){
for(int j=0;j<n;j++){
if(obstacleGrid[i][j] == 1)
maxpath[j] = 0;
else if(j>0)
maxpath[j] = maxpath[j]+maxpath[j-1];
}
}
return maxpath[n-1];
}

本文探讨了在网格中加入障碍物后,唯一路径数量的变化。通过动态规划方法,详细解析了解决这类问题的算法,并提供了Java和C++实现案例。
529

被折叠的 条评论
为什么被折叠?



