今天开始把MapReduce Design Patterns这本书上的mapreduce例子过一遍,我觉得这本书对学mapreduce编程非常好,把这本书看完了,基本上能遇到的mapreduce问题也都能处理了。下面开始第一篇吧。这个程序是统计一个名为comment.xml中的词频。直接上代码吧。
//解析xml文件,并存入map中。
package mrdp.utils;
import java.util.HashMap;
import java.util.Map;
public class MRDPUtils {
public static final String[] REDIS_INSTANCES = { "p0", "p1", "p2", "p3",
"p4", "p6" };
// This helper function parses the stackoverflow into a Map for us.
public static Map<String, String> transformXmlToMap(String xml) {
Map<String, String> map = new HashMap<String, String>();
try {
String[] tokens = xml.trim().substring(5, xml.trim().length() - 3)
.split("\"");
for (int i = 0; i < tokens.length - 1; i += 2) {
String key = tokens[i].trim();
String val = tokens[i + 1];
map.put(key.substring(0, key.length() - 1), val);
}
} catch (StringIndexOutOfBoundsException e) {
System.err.println(xml);
}
return map;
}
}
//主程序
package mrdp.ch1;
import java.io.IOException;
import java.util.StringTokenizer;
import java.util.Map;
import mrdp.utils.MRDPUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.commons.lang.StringEscapeUtils;
public class CommentWordCount {
public static class SOWordCountMapper extends
Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {
// Parse the input string into a nice map
Map<String, String> parsed = MRDPUtils.transformXmlToMap(value
.toString());
// Grab the "Text" field, since that is what we are counting over
String txt = parsed.get("Text");
// .get will return null if the key is not there
if (txt == null) {
// skip this record
return;
}
// Unescape the HTML because the SO data is escaped.
txt = StringEscapeUtils.unescapeHtml(txt.toLowerCase());
// Remove some annoying punctuation
txt = txt.replaceAll("'", ""); // remove single quotes (e.g., can't)
txt = txt.replaceAll("[^a-zA-Z]", " "); // replace the rest with a space
// Tokenize the string, then send the tokens away
StringTokenizer itr = new StringTokenizer(txt);
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends
Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args)
.getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: CommentWordCount <in> <out>");
System.exit(2);
}
@SuppressWarnings("deprecation")
Job job = new Job(conf, "StackOverflow Comment Word Count");
job.setJarByClass(CommentWordCount.class);
job.setMapperClass(SOWordCountMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
这个程序就不用过多解释了,只要会java和稍微看过wordcount的人都知道的
我的mapreduce程序是在eclipse上调试的,在运行此程序时需要填写参数,即在run configuration中填上自己的hdfs地址,如我的参数是:
hdfs://localhost:8010/user/jpan/comments.xml hdfs://localhost:8010/user/jpan/output1
测试数据的链接在http://pan.baidu.com/s/1c0xP6Dy,里面有comment.xml文件,另外一些文件我们会在后面用到。
MapReduce Design Patterns这本书的链接http://pan.baidu.com/s/1jGt96Hg