【PAT】【Advanced Level】1128. N Queens Puzzle (20)

该博客讨论了如何判断一个给定的配置是否为N皇后问题的解决方案。它解释了简化后的棋盘表示方法,其中每个配置由整数序列表示,表示每一列中皇后所在的行。博客提供了输入和输出规格,并提及了解决此问题的思路,涉及使用map来跟踪列和两条斜对角线上的皇后位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1128. N Queens Puzzle (20)

时间限制
300 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1, Q2, ..., QN), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

 
Figure 1
 
Figure 2

Input Specification:

Each input file contains several test cases. The first line gives an integer K (1 < K <= 200). Then K lines follow, each gives a configuration in the format "N Q1 Q2 ... QN", where 4 <= N <= 1000 and it is guaranteed that 1 <= Qi <= N for all i=1, ..., N. The numbers are separated by spaces.

Output Specification:

For each configuration, if it is a solution to the N queens problem, print "YES" in a line; or "NO" if not.

Sample Input:
4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4
Sample Output:
YES
NO
NO
YES
原题链接:

https://www.patest.cn/contests/pat-a-practise/1128

思路:

map映射列,两条斜对角线(i+j,i-j)

CODE:

#include<iostream>
#include<map>
using namespace std;
int main()
{
	int n;
	cin>>n;
	for (int i=0;i<n;i++)
	{
		int m;
		cin>>m;
		map<int,int> row;
		map<int,int> d1;
		map<int,int> d2;
		int flag=0;
		for (int j=1;j<=m;j++)
		{
			int t;
			cin>>t;
			if (row[t]==1)
			{
				flag=1;
			}
			if (d1[j+t]==1)
			{
				flag=1;
			}
			if (d2[t-j]==1)
			{
				flag=1;
			}
			row[t]=1;
			d1[j+t]=1;
			d2[t-j]=1;
		}
		if (flag==0)
		{
			cout<<"YES"<<endl;
		}
		else
		{
			cout<<"NO"<<endl;
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值