【PAT】【Advanced Level】1072. Gas Station (30)

这是一道关于城市规划的问题,需要找出建立加油站的最佳位置,使得加油站与所有住宅的最短距离最大化,并确保所有住宅都在服务范围内。如果存在多个最佳方案,选择平均距离最小且编号最小的。题目提供了输入输出规范和解题思路,包括使用Dijkstra算法加上特定条件判断来解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1072. Gas Station (30)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A gas station has to be built at such a location that the minimum distance between the station and any of the residential housing is as far away as possible. However it must guarantee that all the houses are in its service range.

Now given the map of the city and several candidate locations for the gas station, you are supposed to give the best recommendation. If there are more than one solution, output the one with the smallest average distance to all the houses. If such a solution is still not unique, output the one with the smallest index number.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 positive integers: N (<= 103), the total number of houses; M (<= 10), the total number of the candidate locations for the gas stations; K (<= 104), the number of roads connecting the houses and the gas stations; and DS, the maximum service range of the gas station. It is hence assumed that all the houses are numbered from 1 to N, and all the candidate locations are numbered from G1 to GM.

Then K lines follow, each describes a road in the format
P1 P2 Dist
where P1 and P2 are the two ends of a road which can be either house numbers or gas station numbers, and Dist is the integer length of the road.

Output Specification:

For each test case, print in the first line the index number of the best location. In the next line, print the minimum and the average distances between the solution and all the houses. The numbers in a line must be separated by a space and be accurate up to 1 decimal place. If the solution does not exist, simply output “No Solution”.

Sample Input 1:
4 3 11 5
1 2 2
1 4 2
1 G1 4
1 G2 3
2 3 2
2 G2 1
3 4 2
3 G3 2
4 G1 3
G2 G1 1
G3 G2 2
Sample Output 1:
G1
2.0 3.3
Sample Input 2:
2 1 2 10
1 G1 9
2 G1 20
Sample Output 2:
No Solution

原题链接:

https://www.patest.cn/contests/pat-a-practise/1072

https://www.nowcoder.com/pat/5/problem/4121

思路:

英语渣。。没怎看懂题意。。

题目的要求是:

针对多个解,首先保证到 最近点 的距离 最远。再保证平均值最小

DIJ+条件判断即可。

注意DIJ的细节(搜不到扩展点怎么办(退出),检查是否有不可达点)。。否则段错误。。

CODE:

#include<iostream>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#define N 1001
#define M 11


using namespace std;

int edge[N+M][N+M];

int dist[N+M];

bool flag[N+M];

int n,m,k,dm;

int dji(int s)
{
	for (int j=1;j<=m+n;j++)
	{
		dist[j]=edge[s][j];
		flag[j]=0;
	}
	flag[s]=1;
	for (int k=1;k<n+m;k++)
	{
		int fl=0;
		int minn=1000000000;
		int ind=-1;
		for(int i=1;i<=n+m;i++)
		{
			if (flag[i]==1) continue;
			if (dist[i]==-1) continue;
			if (dist[i]<minn)
			{
				minn=dist[i];
				ind=i;
			}
		}
		//cout<<ind<<endl;
		if (ind!=-1) flag[ind]=1;
		else
			break;
		for (int i=1;i<=n+m;i++)
		{
			if (flag[i]==1) continue;
			if (edge[ind][i]==-1) continue;
			if (dist[i]==-1||dist[i]>dist[ind]+edge[ind][i])
			{
				dist[i]=dist[ind]+edge[ind][i];
			}
			
		}
		//for (int i=1;i<=n+m;i++)	cout<<dist[i]<<" ";		cout<<endl;
	}
	int ma=-1;
	for (int i=1;i<=n;i++)
	{
		//cout<<dist[i]<<" ";
		if (i==s) continue;
		ma=max(ma,dist[i]);
		if (dist[i]==-1) return dm+1;
	}
	//cout<<endl;
	
	return ma;
}



int main()
{
	memset(edge,-1,sizeof(edge));
	cin>>n>>m>>k>>dm;
	for (int i=1;i<=n+m;i++){edge[i][i]=0;}
	for (int i=0;i<k;i++)
	{
		string aa,bb;
		int a,b,c;
		cin>>aa>>bb>>c;
		if (aa[0]=='G')
			a=atoi(aa.substr(1,aa.length()-1).c_str())+n;
		else
			a=atoi(aa.c_str());
		if (bb[0]=='G')
			b=atoi(bb.substr(1,bb.length()-1).c_str())+n;	
		else
			b=atoi(bb.c_str());	
		//cout<<edge[a][b]<<" "<<edge[b][a]<<endl;
		if (edge[a][b]==-1)
			edge[a][b]=edge[b][a]=c;
		else
			edge[a][b]=edge[b][a]=min(edge[a][b],c);
		//cout<<edge[a][b]<<" "<<edge[b][a]<<endl;
	}
	int inde=0;
	int mind=-1;
	int aver=1000000000;
	for (int i=1;i<=m;i++)
	{
		int re=dji(i+n);
		if (re<=dm)
		{
			int mi=1000000000;
			int ma=0;
			for (int j=1;j<=n;j++)
			{
				mi=min(mi,dist[j]);
				ma+=dist[j];
			}
			//cout<<mi<<endl;
			if (mi>mind)
			{
				inde=i;
				mind=mi;
				aver=ma;
			}
			else if (mi==mind)
			{
				if (ma<aver)
				{
					inde=i;
					mind=mi;
					aver=ma;	
				}
			}
		}
	}
	if (aver==1000000000)
	{
		printf("No Solution");
	}
	else
	{
		//cout<<mind<<" "<<aver;
		float re1=mind;
		float re2=(float)aver/(float)n;
		printf("G%d\n",inde);
		printf("%.1f %.1f",re1,re2);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值