Java线程池

  我们平时在写程序中常常使用多线程来提高CPU以及其他资源的利用率,但是当CPU中的线程超过了CPU调度范围时,我们的程序就会变得缓慢甚至出现死锁 导致程序卡死等现象。也有很多时候我们需要创建的线程量巨大,但是每个线程的执行时间却相对较小,这样在新启线程和关闭线程的时候消耗的系统资源要比花在处理实际的用户请求的时间和资源更多。除了创建和销毁线程的开销之外,活动的线程也消耗系统资源。在一个JVM 里创建太多的线程可能会导致系统由于过度消耗内存而用完内存或“切换过度”

  线程池的出现能较好的解决以上问题,线程池为线程生命周期开销问题和资源不足问题提供了解决方案。通过对多个任务重用线程,线程创建的开销被分摊到了多个 任务上。其好处是,因为在请求到达时线程已经存在,所以无意中也消除了线程创建所带来的延迟。这样,就可以立即为请求服务,使应用程序响应更快。而且,通 过适当地调整线程池中的线程数目,也就是当请求的数目超过某个阈值时,就强制其它任何新到的请求一直等待,直到获得一个线程来处理为止,从而可以防止资源 不足。

  在使用线程池之前,必须知道如何去创建一个线程池,在Java5中,需要了解的是java.util.concurrent.Executors类的API,这个类提供了四种比较常用线程池。

1.newCachedThreadPool

  newCachedThreadPool()是根据需求创建新线程的,需求多时,创建的就多,需求少时,JVM自己会慢慢的释放掉多余的线程,它是一种可变尺寸的线程池。

ExecutorService threadPool = Executors.newCachedThreadPool();
for(int i=0;i<5;i++){
MyThread t = new MyThread();
threadPool.execute(t);
}

运行结果:

pool-1-thread-3 is running...
pool-1-thread-4 is running...
pool-1-thread-2 is running...
pool-1-thread-1 is running...
pool-1-thread-5 is running...

2.newFixedThreadPool

  创建一个定长线程池,可控制线程最大并发数,超出的线程会在队列中等待。新的线程加入后,如果正在运行的线程达到了上限,则会阻塞,直到有了空闲的线程来运行。他是定长尺寸的线程池。

ExecutorService threadPool = Executors.newFixedThreadPool(3);

此时线程池的最大线程为3,运行效果:

pool-1-thread-1 is running...
pool-1-thread-2 is running...
pool-1-thread-2 is running...
pool-1-thread-1 is running...
pool-1-thread-3 is running...

3.newScheduledThreadPool

  创建一个定长线程池,支持定时及周期性任务执行。延迟执行示例代码如下:

ScheduledExecutorService scheduledThreadPool = Executors.newScheduledThreadPool(2);
MyThread t1 = new MyThread();    
MyThread t2 = new MyThread();    
MyThread t3 = new MyThread();    
 // 将线程放入池中进行执行    
 scheduledThreadPool.execute(t1);    
 // 使用延迟执行风格的方法    
 scheduledThreadPool.schedule(t2, 1000, TimeUnit.MILLISECONDS);
 scheduledThreadPool.schedule(t3, 10, TimeUnit.MILLISECONDS);

最多只能运行两个2个线程,延迟效果自行体会,运行结果:

pool-1-thread-1 is running...
pool-1-thread-2 is running...
pool-1-thread-1 is running...

4.newSingleThreadExecutor

  创建一个单线程化的线程池,它只会用唯一的工作线程来执行任务,保证所有任务按照指定顺序(FIFO, LIFO, 优先级)执行。示例代码如下:

ExecutorService threadPool = Executors.newSingleThreadExecutor();

只会运行一个线程,运行效果:

pool-1-thread-1 is running...
pool-1-thread-1 is running...
pool-1-thread-1 is running...
pool-1-thread-1 is running...
pool-1-thread-1 is running...

  以上四中线程池分别运用于不同场景,可在项目中根据实际情况选择应用,线程池的作用不仅仅是可控制创建线程的数量,更多的是在多线程中省去了频繁的线程创建和销毁过程,降低了系统销毁。


资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开与隐藏效果是一种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供一个完整的代码示例。为了实现这一功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有一个按钮和一个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进一步增强用户体验,我们还添加了一个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进一步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。
<think>我们正在讨论Java线程池的使用和原理。根据引用内容,线程池Java中主要通过ThreadPoolExecutor类实现,从JDK5开始内置支持。线程池的好处包括重用线程、控制并发数量、管理线程生命周期等。常见的线程池类型有:FixedThreadPool(固定容量)、CachedThreadPool(缓存)、SingleThreadExecutor(单线程)、ScheduledThreadPool(定时任务)以及通过ThreadPoolExecutor自定义创建。我们将分步骤讲解:1.线程池的核心原理2.创建线程池的五种方式(包括不推荐的原因)3.重点讲解ThreadPoolExecutor及其参数4.线程池的工作机制(任务提交、执行、拒绝策略等)5.使用示例注意:根据引用[3]和[4],ThreadPoolExecutor是构建线程池的核心类,因此我们将重点分析。步骤1:线程池的核心原理线程池通过预先创建一定数量的线程并维护它们,避免频繁创建和销毁线程的开销。当有任务提交时,线程池分配空闲线程执行任务;若没有空闲线程,任务将被放入队列等待;当队列满时,根据设定的拒绝策略处理。步骤2:创建线程池的五种方式(引用[3]和[5])1.newCachedThreadPool:创建一个可缓存的线程池,线程数可无限增加(最大为Integer.MAX_VALUE),空闲线程默认60秒回收。不推荐原因:可能创建过多线程导致OOM。2.newFixedThreadPool:固定大小的线程池,使用无界队列(LinkedBlockingQueue)。不推荐原因:无界队列可能堆积大量任务导致OOM。3.newSingleThreadExecutor:只有一个线程的线程池,同样使用无界队列。不推荐原因同上。4.newScheduledThreadPool:用于定时或周期性任务的线程池。不推荐直接使用的原因是其最大线程数为Integer.MAX_VALUE,可能创建过多线程。5.推荐方式:直接使用ThreadPoolExecutor构造函数创建,可明确指定参数,避免资源耗尽。步骤3:ThreadPoolExecutor的七个参数(引用[3]和[4])构造方法如下:```javapublicThreadPoolExecutor(intcorePoolSize,intmaximumPoolSize,longkeepAliveTime,TimeUnitunit,BlockingQueue<Runnable>workQueue,ThreadFactorythreadFactory,RejectedExecutionHandlerhandler)```1.corePoolSize:核心线程数,即使空闲也不会被回收(除非设置allowCoreThreadTimeOut)2.maximumPoolSize:最大线程数3.keepAliveTime:非核心线程的空闲存活时间4.unit:存活时间单位5.workQueue:任务队列(常用有ArrayBlockingQueue有界队列,LinkedBlockingQueue无界队列,SynchronousQueue同步移交队列)6.threadFactory:线程工厂,用于创建线程7.handler:拒绝策略(当线程池和队列都满时触发)步骤4:线程池的工作机制(任务提交执行流程)1.提交任务后,如果当前线程数小于corePoolSize,则创建新线程执行(即使有空闲线程)。2.如果当前线程数>=corePoolSize,则将任务放入workQueue。3.如果队列已满,且线程数小于maximumPoolSize,则创建新的非核心线程执行。4.如果队列已满且线程数达到maximumPoolSize,则触发拒绝策略。拒绝策略(handler)有四种:-AbortPolicy(默认):抛出RejectedExecutionException-CallerRunsPolicy:由调用线程执行该任务-DiscardPolicy:丢弃任务,不抛异常-DiscardOldestPolicy:丢弃队列最前面的任务,然后重试步骤5:使用示例(以ThreadPoolExecutor为例)下面是一个自定义线程池的示例:```javaimportjava.util.concurrent.*;publicclassThreadPoolExample{publicstaticvoidmain(String[]args){//创建线程池ThreadPoolExecutorexecutor=newThreadPoolExecutor(2,//核心线程数5,//最大线程数60,//空闲线程存活时间TimeUnit.SECONDS,newArrayBlockingQueue<>(10),//有界队列,容量10Executors.defaultThreadFactory(),newThreadPoolExecutor.AbortPolicy());//拒绝策略:直接抛出异常//提交任务for(inti=0;i<15;i++){finalinttaskId=i;executor.execute(()->{System.out.println("Task"+taskId+"isrunningonthread"+Thread.currentThread().getName());try{Thread.sleep(1000);//模拟任务执行}catch(InterruptedExceptione){e.printStackTrace();}});}//关闭线程池executor.shutdown();}}```注意:实际任务数15个,核心线程2个,最大线程5个,队列容量10个。因此前2个任务会创建核心线程执行,接下来的10个任务放入队列,然后第13、14、15个任务会创建非核心线程(共3个非核心线程,总线程数5个)。如果超过15个任务(比如16个),则会触发拒绝策略。最后,关于线程池的关闭,可以使用shutdown()(等待已提交任务完成)或shutdownNow()(尝试中断所有线程,停止任务)。总结:使用线程池时,推荐直接使用ThreadPoolExecutor构造函数,根据实际需求设置参数,避免使用Executors工厂方法可能导致的资源耗尽问题。相关问题:1.线程池中任务队列有哪些类型?各自特点是什么?2.如何合理设置线程池的核心线程数和最大线程数?3.线程池的拒绝策略有哪些?如何自定义拒绝策略?4.如何监控线程池的运行状态?5.线程池中线程是如何创建的?如何自定义线程工厂?</think>### Java线程池使用指南与原理分析 Java线程池通过`java.util.concurrent`包实现,核心类是`ThreadPoolExecutor`。线程池的核心思想是**复用线程**,避免频繁创建销毁线程的开销。线程池中的线程执行完任务后不会销毁,而是回到池中等待新任务[^2]。 --- #### **一、线程池的创建方式** Java提供5种创建线程池的方法(实际都是`ThreadPoolExecutor`的包装): 1. **固定大小线程池**(推荐) ```java ExecutorService fixedPool = Executors.newFixedThreadPool(5); // 固定5个线程 ``` - 特点:核心线程数=最大线程数,使用无界队列`LinkedBlockingQueue` - 风险:任务过多时可能导致OOM(队列无限增长)[^5] 2. **缓存线程池**(不推荐) ```java ExecutorService cachedPool = Executors.newCachedThreadPool(); ``` - 特点:线程数无上限(`Integer.MAX_VALUE`),空闲线程60秒回收 - 风险:高并发时可能创建大量线程导致OOM[^3] 3. **单线程池** ```java ExecutorService singlePool = Executors.newSingleThreadExecutor(); ``` - 特点:仅1个线程,保证任务顺序执行 - 风险:同固定线程池(无界队列问题) 4. **定时任务线程池** ```java ScheduledExecutorService scheduledPool = Executors.newScheduledThreadPool(3); ``` 5. **推荐做法:手动创建`ThreadPoolExecutor`** ```java ThreadPoolExecutor customPool = new ThreadPoolExecutor( 4, // 核心线程数 10, // 最大线程数 60, // 空闲线程存活时间(秒) TimeUnit.SECONDS, new ArrayBlockingQueue<>(100), // 有界队列(容量100) new ThreadPoolExecutor.AbortPolicy() // 拒绝策略 ); ``` --- #### **二、核心参数详解(7个关键参数)** ```java public ThreadPoolExecutor( int corePoolSize, // 核心线程数(常驻线程) int maximumPoolSize, // 最大线程数 long keepAliveTime, // 非核心线程空闲存活时间 TimeUnit unit, // 时间单位 BlockingQueue<Runnable> workQueue, // 任务队列 ThreadFactory threadFactory, // 线程工厂 RejectedExecutionHandler handler // 拒绝策略 ) ``` 1. **任务队列类型** - `ArrayBlockingQueue`:**有界队列**(推荐),避免OOM - `LinkedBlockingQueue`:**无界队列**(默认) - `SynchronousQueue`:不存储任务,直接移交线程 2. **拒绝策略**(当队列和线程池全满时触发) - `AbortPolicy`(默认):抛出`RejectedExecutionException` - `CallerRunsPolicy`:由调用者线程直接执行任务 - `DiscardPolicy`:静默丢弃任务 - `DiscardOldestPolicy`:丢弃队列最旧的任务 --- #### **三、线程池工作原理** 1. **任务提交流程**: - 当线程数 < `corePoolSize`,**创建新线程**执行任务 - 当线程数 >= `corePoolSize`,任务进入**工作队列** - 当队列已满且线程数 < `maximumPoolSize`,**创建临时线程**执行 - 当队列满且线程数达到`maximumPoolSize`,触发**拒绝策略**[^4] 2. **线程回收机制**: - 核心线程默认不回收(除非设置`allowCoreThreadTimeOut(true)`) - 非核心线程空闲超过`keepAliveTime`后自动销毁 --- #### **四、最佳实践** 1. **参数设置建议**: - CPU密集型任务:核心线程数 = CPU核数 + 1 - IO密集型任务:核心线程数 = 2 * CPU核数 - 使用**有界队列**防止资源耗尽 - 拒绝策略选择`CallerRunsPolicy`保证任务不丢失 2. **代码示例**: ```java ThreadPoolExecutor executor = new ThreadPoolExecutor( Runtime.getRuntime().availableProcessors(), // 核心线程数=CPU核数 Runtime.getRuntime().availableProcessors() * 2, 30, TimeUnit.SECONDS, new ArrayBlockingQueue<>(500), Executors.defaultThreadFactory(), new ThreadPoolExecutor.CallerRunsPolicy() ); // 提交任务 executor.execute(() -> System.out.println("Task running")); // 优雅关闭 executor.shutdown(); executor.awaitTermination(1, TimeUnit.MINUTES); ``` 3. **注意事项**: - 避免使用`Executors`快捷方法(有OOM风险) - 监控线程池状态(通过`getActiveCount()`等方法) - 务必调用`shutdown()`释放资源 --- #### **五、原理解析** - **线程复用**:通过`Worker`类封装线程,循环从队列获取任务执行[^3] - **任务调度**:核心逻辑在`ThreadPoolExecutor.execute()`方法中 - **资源控制**:通过`BlockingQueue`实现生产者-消费者模型 > 线程池的本质是**资源池化技术**(Pooling),通过复用线程降低系统开销,同时提供流量缓冲和容错能力[^4]。 --- ### 相关问题 1. **为什么`FixedThreadPool`使用无界队列会导致OOM?如何避免?** 2. **线程池中`corePoolSize`和`maximumPoolSize`设置不当会产生什么后果?** 3. **如何实现一个自定义拒绝策略(如记录日志或降级处理)?** 4. **线程池的`shutdown()`和`shutdownNow()`有什么区别?** 5. **如何监控线程池的运行状态(如队列积压、活跃线程数)?** [^1]: ThreadPoolExecutor是Java线程池的核心实现类。 [^2]: JDK5开始内置线程池,线程执行后返回池中复用。 [^3]: 手动创建ThreadPoolExecutor可避免资源耗尽风险。 [^4]: 线程池通过队列缓冲和动态扩缩容管理任务。 [^5]: FixedThreadPool的无界队列可能导致OOM。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值