BZOJ 2933([Poi1999]地图-区间Dp)

本文介绍了一个关于地图染色的问题,通过区间动态规划算法求解最优染色方案,以实现最小化的颜色误差总和。文章提供了完整的C++代码实现,并详细解释了输入输出格式及样例。

2933: [Poi1999]地图

Time Limit: 1 Sec   Memory Limit: 128 MB
Submit: 7   Solved: 7
[ Submit][ Status]

Description

 
一个人口统计办公室要绘制一张地图。由于技术的原因只能使用少量的颜色。两个有相同或相近人口的区域在地图应用相同的颜色。例如一种颜色k,则A(k) 是相应的数,则有:
  • 在用颜色k的区域中至少有一半的区域的人口不大于A(k)
  • 在用颜色k的区域中至少有一半的区域的人口不小于A(k)
区域颜色误差是该区域的人口与A(k)差的绝对值。累计误差是所有区域颜色误差的总和。我们要求出一种最佳的染色方案(累计误差最小)。
任务
写一个程序:
  • 读入每个区域的人口数
  • 计算最小的累计误差
  • 将结果输出

Input

 
第一行有一个整数n,表示区域数,10< n <3000。在第二行中的数m表示颜色数,2 <= m <= 10。在接下来的n中每行有一个非负整数,表示一个区域的人口。人口都不超过2^30

Output

输出一个整数,表示最小的累计误差

Sample Input

11
3
21
14
6
18
10
2
15
12
3
2
2

Sample Output

15

HINT

Source


区间Dp

w[i][j]表示i到j划为一段的代价。。。

f[i][j]表示前i个用j个颜色的mincost


#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
#include<cmath>
#include<cctype>
#include<cassert>
#include<climits>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define RepD(i,n) for(int i=n;i>=0;i--)
#define MEM(a) memset(a,0,sizeof(a))
#define MEMI(a) memset(a,127,sizeof(a))
#define MEMi(a) memset(a,128,sizeof(a))
#define INF (2139062143)
#define F (1000000009)
#define MAXN (3000+10)
#define MAXM (10+10)
typedef long long ll;
int n,m;
ll a[MAXN],f[MAXN][MAXM]={0},w[MAXN][MAXN]={0};
int main()
{
// freopen("bzoj2933.in","r",stdin);
   scanf("%d%d",&n,&m);
   For(i,n) scanf("%lld",&a[i]);
   sort(a+1,a+1+n);
   For(j,n)
   {
      ForD(i,j-1)
      {
         w[i][j]=w[i+1][j]+a[((i+1)+j)/2]-a[i];
      }
   }
   Rep(i,n+1) Rep(j,m+1) f[i][j]=INF;
   f[0][0]=0;
   For(i,n)
      For(j,m)
      {
         f[i][j]=INF;
         Rep(k,i)
         {
            f[i][j]=min(f[i][j],f[k][j-1]+w[k+1][i]);
         }
      }
   cout<<f[n][m]<<endl;
//   while(1);
   return 0;
}




基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于提升系统在存在不确定性与扰动情况下的控制性能与稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应与稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性与工程价值。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性与鲁棒性,支撑科研论文复现与工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制与双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性与系统稳定性之间平衡的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值