一步一步学数据结构之1--n(二叉树)

本文介绍了二叉树的基本概念,包括满二叉树和完全二叉树的定义,强调了完全二叉树的特性。还概述了二叉树的五个基本性质,并列举了常见的二叉树操作,如创建、销毁、插入、删除节点等。通过代码示例,详细解释了插入和删除节点的操作过程。

 

        既然树已经熟悉了,那我们就来学习学习二叉树吧,二叉树是由n(n>=0)个结点组成的有限集合,该集合或者为空,或者是由一个根结点加上两棵分别称为左子树和右子树的﹑互不相交的二叉树组成。

        如图

        

有两个定义需要大家知道下:

1.满二叉树

        如果二叉树中所有分支结点的度数都为2,且叶子结点都在同一层次上,则称这类二叉树为满二叉树。

2.完全二叉树

        如果一棵具有n个结点的高度为k的二叉树,它的每一个结点都与高度为k的满二叉树中编号为1-n的结点一一对应,则称这棵二叉树为完全二叉树。(从上到下从左到右编号)

        完全二叉树的叶结点仅出现在最下面两层

        最下层的叶结点一定出现在左边

        倒数第二层的叶结点一定出现在右边

        完全二叉树中度为1的结点只有左孩子

        同样结点数的二叉树,完全二叉树的高度最小

二叉树所具有的5个性质需要大家掌握:

 

这里介绍通用树的常用操作:

l 创建二叉树

l 销毁二叉树

l 清空二叉树

l 插入结点到二叉树中

l 删除结点

l 获取某个结点

l 获取根结点

l 获取二叉树的高度

l 获取二叉树的总结点数

l 获取二叉树的度

l 输出二叉树

代码总分为三个文件:

BTree.h : 放置功能函数的声明,以及树的声明,以及树结点的定义 

BTree.c : 放置功能函数的定义,以及树的定义

Main.c   : 主函数,使用功能函数完成各种需求,一般用作测试

整体结构图为:

这里详细说下插入结点操作,删除结点操作和获取结点操作:

 

插入结点操作:

如图:

  

删除结点操作:

如图:

获取结点操作:

            获取结点操作和插入删除结点操作中的指路法定位结点相同

OK! 上代码:

BTree.h : 

#ifndef _BTREE_H_
#define _BTREE_H_

#define BT_LEFT 0
#define BT_RIGHT 1

typedef void BTree;
typedef unsigned long long BTPos;

typedef struct _tag_BTreeNode BTreeNode;
struct _tag_BTreeNode
{
	BTreeNode* left;
	BTreeNode* right;
};

typedef void (BTree_Printf)(BTreeNode*);

BTree* BTree_Create();

void BTree_Destroy(BTree* tree);

void BTree_Clear(BTree* tree);

int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag);

BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count);

BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count);

BTreeNode* BTree_Root(BTree* tree);

int BTree_Height(BTree* tree);

int BTree_Count(BTree* tree);

int BTree_Degree(BTree* tree);

void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div);

#endif


 

BTree.c : 

#include <stdio.h>
#include <malloc.h>
#include "BTree.h"

typedef struct _tag_BTree TBTree;
struct _tag_BTree
{
	int count;
	BTreeNode* root;
};

BTree* BTree_Create()
{
	TBTree* ret = (TBTree*)malloc(sizeof(TBTree));
	
	if(NULL != ret)
	{
		ret->count = 0;
		ret->root  = NULL;
	}
	
	return ret;
}

void BTree_Destroy(BTree* tree)
{
	free(tree);
}

void BTree_Clear(BTree* tree)
{
	TBTree* btree = (TBTree*)tree;
	
	if(NULL != btree)
	{
		btree->count = 0;
		btree->root = NULL;
	}
}

int BTree_Insert(BTree* tree, BTreeNode* node, BTPos pos, int count, int flag)
{
	TBTree* btree = (TBTree*)tree;
	
	int ret = (NULL!=btree) && (NULL!=node) && ((flag == BT_RIGHT) || (flag == BT_LEFT));
	
	int bit = 0;
	
	if(ret)
	{
		BTreeNode* parent = NULL;
		BTreeNode* current = btree->root;
		
		node->left = NULL;
		node->right = NULL;
		
		while((0 < count) && (NULL != current))
		{
			bit = pos & 1;
			pos = pos >> 1;
	
			parent = current;
			
			if(BT_LEFT == bit)
			{
				current = current->left;
			}
			else if(BT_RIGHT == bit)
			{
				current = current->right;
			}
			
			count--;
		}
		
		if(BT_LEFT == flag)
		{
			node->left = current;
		}
		else if(BT_RIGHT == flag)
		{
			node->right = current;
		}
		
		if(NULL != parent)
		{
			if(BT_LEFT == bit)
			{
				parent->left = node;	
			}
			else if(BT_RIGHT == bit)
			{
				parent->right = node;
			}
		}
		else
		{
			btree->root = node;
		}
		
		btree->count++;
	}

	return ret;
}

static int recursive_count(BTreeNode* root)
{
	int ret = 0;
	
	if(NULL != root)
	{
		ret = recursive_count(root->left) + 1 + 
			  recursive_count(root->right);
	}
	
	return ret;
}

BTreeNode* BTree_Delete(BTree* tree, BTPos pos, int count)
{
	TBTree* btree = (TBTree*)tree;
	
	BTreeNode* ret = NULL;
	
	int bit = 0;
	
	if(NULL != btree)
	{
		BTreeNode* parent = NULL;
		BTreeNode* current = btree->root;
		
		while((0 < count) && (NULL != current))
		{
			bit = pos & 1;
			pos = pos >> 1;
			
			parent = current;
			
			if(BT_RIGHT == bit)
			{
				current = current->right;
			}
			else if(BT_LEFT == bit)
			{
				current = current->left;
			}
			
			count--;
		}
		
		if(NULL != parent)
		{
			if(BT_LEFT == bit)
			{
				parent->left = NULL;
			}
			else if (BT_RIGHT == bit)
			{
				parent->right = NULL;
			}
		}
		else
		{
			btree->root = NULL;
		}
		
		ret = current;
		btree->count = btree->count - recursive_count(ret);
	}
	
	return ret;
}


BTreeNode* BTree_Get(BTree* tree, BTPos pos, int count)
{
	TBTree* btree = (TBTree*)tree;
	
	BTreeNode* ret = NULL;
	
	int bit = 0;
	
	if(NULL != btree)
	{
		BTreeNode* current = btree->root;
		
		while((0<count) && (NULL!=current))
		{
			bit = pos & 1;
			pos = pos >> 1;
			
			if(BT_RIGHT == bit)
			{
				current = current->right;
			}
			else if(BT_LEFT == bit)
			{
				current = current->left;
			}
			
			count--;
		}
		
		ret = current;
	}
	
	return ret;
}

BTreeNode* BTree_Root(BTree* tree)
{
	TBTree* btree = (TBTree*)tree;
	
	BTreeNode* ret = NULL;
	
	if(NULL != btree)
	{
		ret = btree->root;
	}
	
	return ret;
}

static int recursive_height(BTreeNode* root)
{
	int ret = 0;
	
	if(NULL != root)
	{
		int lh = recursive_height(root->left);
		int rh = recursive_height(root->right);
		
		ret = ((lh > rh) ? lh : rh) + 1;
	}	
	
	return ret;
}

int BTree_Height(BTree* tree)
{
	TBTree* btree = (TBTree*)tree;
	
	int ret = -1;
	
	if(NULL != btree)
	{
		ret = recursive_height(btree->root);
	}
	
	return ret;
}

int BTree_Count(BTree* tree)
{
	TBTree* btree = (TBTree*)tree;
	
	int ret = -1;
	
	if(NULL != btree)
	{
		ret = btree->count;
	}
	
	return ret;
}

static int recursive_degree(BTreeNode* root)
{
	int ret = 0;
	
	if(NULL != root)
	{
		if(NULL != root->left)
		{
			ret++;
		}
		if(NULL != root->right)
		{
			ret++;
		}
		
		if(1 == ret)
		{
			int ld = recursive_degree(root->left);
			int rd = recursive_degree(root->right);
			
			if(ret < ld)
			{
				ret = ld;
			}
			if(ret < rd)
			{
				ret = rd;
			}
		}
	}
	
	return ret;
}

int BTree_Degree(BTree* tree)
{
	TBTree* btree = (TBTree*)tree;
	
	int ret = -1;
	
	if(NULL != btree)
	{
		ret = recursive_degree(btree->root);
	}
	
	return ret;
}

static void recursive_display(BTreeNode* node, BTree_Printf* pFunc, int format, int gap, char div)
{
	int i = 0;
	
	if((NULL != node) && (NULL != pFunc))
	{
		for(i=0; i<format; i++)
		{
			printf("%c", div);
		}
		pFunc(node);
		printf("\n");
		
		if((NULL != node->left) || (NULL != node->right))
		{
			recursive_display(node->left, pFunc, format+gap, gap, div);
			recursive_display(node->right, pFunc, format+gap, gap, div);
		}
	}
	else
	{
		for(i=0; i<format; i++)
		{
			printf("%c", div);
		}
		printf("\n");
	}
}

void BTree_Display(BTree* tree, BTree_Printf* pFunc, int gap, char div)
{
	TBTree* btree = (TBTree*)tree;
	
	if(NULL != btree)
	{
		recursive_display(btree->root, pFunc, 0, gap, div);
	}
}


 

Main.c  :

#include <stdio.h>
#include <stdlib.h>
#include "BTree.h"

typedef struct _tag_node
{
	BTreeNode header;
	char v;
}Node;

void printf_data(BTreeNode* node)
{
	if(NULL != node)
	{
		printf("%c", ((Node*)node)->v);
	}
}

int main(void)
{
	BTree* tree = BTree_Create();
	
	Node n1 = {{NULL, NULL}, 'A'};
	Node n2 = {{NULL, NULL}, 'B'};
	Node n3 = {{NULL, NULL}, 'C'};
	Node n4 = {{NULL, NULL}, 'D'};
	Node n5 = {{NULL, NULL}, 'E'};
	Node n6 = {{NULL, NULL}, 'F'};
	
	BTree_Insert(tree, (BTreeNode*)&n1,    0, 0, 0);
	BTree_Insert(tree, (BTreeNode*)&n2, 0x00, 1, 0);
	BTree_Insert(tree, (BTreeNode*)&n3, 0x01, 1, 0);
	BTree_Insert(tree, (BTreeNode*)&n4, 0x00, 2, 0);
	BTree_Insert(tree, (BTreeNode*)&n5, 0x02, 2, 0);
	BTree_Insert(tree, (BTreeNode*)&n6, 0x02, 3, 0);
	
	printf("Height:  %d\n", BTree_Height(tree));
	printf("Degree:  %d\n", BTree_Degree(tree));
	printf("Count :  %d\n", BTree_Count(tree));
	printf("Position At (0x02, 2): %c \n", ((Node*)BTree_Get(tree, 0x02, 2))->v);
	
	printf("Full Tree:\n");
	BTree_Display(tree, printf_data, 4, '-');
	
	BTree_Delete(tree, 0x00, 1);
	printf("After Delete B: \n");
	printf("Height:  %d\n", BTree_Height(tree));
	printf("Degree:  %d\n", BTree_Degree(tree));
	printf("Count :  %d\n", BTree_Count(tree));
	
	printf("Full Tree:\n");
	BTree_Display(tree, printf_data, 4, '-');
	
	BTree_Clear(tree);
	printf("After Clear:\n");
	printf("Height:  %d\n", BTree_Height(tree));
	printf("Degree:  %d\n", BTree_Degree(tree));
	printf("Count :  %d\n", BTree_Count(tree));
	
	printf("Full Tree:\n");
	BTree_Display(tree, printf_data, 4, '-');
	
	BTree_Destroy(tree);
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值