题意:在一些括号中找到一个序列,里面的括号都两两配对。求序列最长长度。
区间DP,dp[i][j]为i~j的最大括号数,考虑第i个括号,有两种情况:不管i直接算dp[i + 1][j];找到和i匹配的右括号,分两边算并加起来,dp[i][j] = dp[i + 1][k - 1] + 2 + dp[k + 1][j]。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* Blog: http://blog.youkuaiyun.com/hcbbt
* File: poj2955.cpp
* Create Date: 2013-11-11 14:47:59
* Descripton: intervel dp
*/
#include <cstdio>
#include <cstring>
#define check(i, j) ((str[i] == '[' && str[j] == ']') || (str[i] == '(' && str[j] == ')'))
#define max(a, b) ((a) > (b) ? (a) : (b))
const int MAXN = 110;
char str[MAXN];
int dp[MAXN][MAXN], n;
int solve(int i, int j) {
if (dp[i][j]) return dp[i][j];
if (j <= i) return 0;
if (j == i + 1) {
if (check(i, j))
return dp[i][j] = 2;
else
return 0;
}
dp[i][j] = solve(i + 1, j);
for (int k = i + 1; k <= j; k++)
if (check(i, k))
dp[i][j] = max(dp[i][j], solve(i + 1, k - 1) + solve(k + 1, j) + 2);
return dp[i][j];
}
int main() {
while (scanf("%s", str) && strcmp(str, "end")) {
memset(dp, 0, sizeof(dp));
printf("%d\n", solve(0, strlen(str) - 1));
}
return 0;
}