[数学]齐次线性方程组的解、SVD、最小二乘法

本文探讨了齐次线性方程组的解法,通过分析方程组与增广矩阵的秩关系,揭示了无解、唯一解和无穷解的情况。同时引入SVD(奇异值分解)来阐述如何利用最小二乘法求解此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


AX=0
这是一个齐次线性方程组(一般的非齐次线性方程组AX=b其实也都可以化为齐次方程组的形式,所以比较普遍)

先要说明在非齐次方程组中,A到底有没有解析解,可以由增广矩阵来判断:
  • r(A)<r(A | b) 方程组无解;
  • r(A)=r(A | b) =n,方程组有唯一解;
  • r(A)=r(A | b) <n,方程组无穷解;
  • r(A)>r(A | b) 不可能,因为增广矩阵的秩大于等于系数矩阵的秩(在矩阵中加入一列,其秩只可能增大,
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值