有很多小伙伴问过我零基础要怎么入门机器学习或者人工智能,今天来提炼一下,方便志同道合的朋友们参考。
记得我刚入此山洞准备修炼的时候,就 Google 了好多这类的问题,那时候觉得大家的建议好多呀,这条路看起来真长,那么多东西要学,那么多书要看,那么多有用的课程要学。
现在我可以就自己走过的坑坑包包来推荐一条简单粗暴的路径。
[step 1: 方向]
在行动之前,先想好这几个最基本的问题,如果自己想不全都可以去搜一下,知乎上很多大拿的回答:
--1.为什么要学习机器学习或者人工智能呢?
我的话,很实在地说,就是不想被淘汰呀!最开始就是这么一个感觉。
官方一点的话,就是可以提高效率呀。
广泛的需求我并没有去想,只是想解决一下自己的需求。
譬如,不想做家务,就弄个机器人给我做;不想做琐事,就弄个智能助理给我做。
所以大家在开始入洞之前,也要先想几分钟这个问题:
eg:是想做数据科学还是人工智能开发呢?
if Data Science:就多做 kaggle 上偏分析的项目
if AI:再想想是自然语言处理还是图像识别呢?
我觉得 NLP 和 CV 是最基础的技术,AI 主要还是看应用领域,现在比较火的:自动驾驶,聊天机器人,ARVR,智能家居,智能教育,等等,最基础的就是看和理解么,当然对于每个具体的方向,肯定是涉及到更多技术和具体的细节知识需要去学的,不过入门的话,这俩是基础。可以选其一,有兴趣也可以选俩。AI 主要还是跟实际应用场景关联起来意义才大,医疗,生物,气象,教育,交通目前比较火,对某个领域感兴趣可以专攻更深。
--2.机器学习,人工智能,数据科学的关系?
为了确立明确的入口,最好是知道这三者的关系,方便大家做计划时更专注一些
大家可以去多看几篇这样的文章,可以很快地了解一下大纲。