PAT-B 1019. 数字黑洞 (20)

本文介绍了一种数学现象——数字黑洞6174,通过不断重组4位数并相减,最终会收敛到固定数值6174。文章提供了一个C语言实现示例,演示了如何编程验证这一有趣的现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1019. 数字黑洞 (20)

时间限制
100 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

给定任一个各位数字不完全相同的4位正整数,如果我们先把4个数字按非递增排序,再按非递减排序,然后用第1个数字减第2个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的6174,这个神奇的数字也叫Kaprekar常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...

现给定任意4位正整数,请编写程序演示到达黑洞的过程。

输入格式:

输入给出一个(0, 10000)区间内的正整数N。

输出格式:

如果N的4位数字全相等,则在一行内输出“N - N = 0000”;否则将计算的每一步在一行内输出,直到6174作为差出现,输出格式见样例。注意每个数字按4位数格式输出。

输入样例1:
6767
输出样例1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例2:
2222
输出样例2:
2222 - 2222 = 0000
 
 
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int cmp(const void *m, const void *n) {
	return(*(int *)n-*(int *)m);
}

int main() {
	int n;
	int a[4]= {0,}; //分别为数字的千位百位十位个位
	scanf("%d",&n);
	while(1) {
		a[0]=n/1000;
		a[1]=n%1000/100;
		a[2]=n%100/10;
		a[3]=n%10;
		qsort(a,4,sizeof(a[0]),cmp);
		printf("%04d - %04d = %04d\n",a[0]*1000+a[1]*100+a[2]*10+a[3],a[3]*1000+a[2]*100+a[1]*10+a[0],a[0]*1000+a[1]*100+a[2]*10+a[3]-a[3]*1000-a[2]*100-a[1]*10-a[0]);
		if(a[0]==a[1]&&a[1]==a[2]&&a[2]==a[3]) break;
		else if(a[0]*1000+a[1]*100+a[2]*10+a[3]-a[3]*1000-a[2]*100-a[1]*10-a[0]==6174) break;
		else n=a[0]*1000+a[1]*100+a[2]*10+a[3]-a[3]*1000-a[2]*100-a[1]*10-a[0];
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值