HDU4405 Areoplane chess(期望dp)

探讨了在一个带有特殊飞行线路的飞机棋游戏中,玩家从起点出发到达终点所需的骰子投掷次数的数学期望问题。通过逆向动态规划的方法,定义状态转移方程并给出了具体的实现代码。
Areoplane chess

传送门1
传送门2
Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N . Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or greater than N .

There are also M flight lines on the chess map. The i-th flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without throwing the dice. If there is another flight line from Yi , Hzz can take the flight line continuously. It is granted that there is no two or more flight lines start from the same grid.

Please help Hzz calculate the expected dice throwing times to finish the game.
Input
There are multiple test cases.
Each test case contains several lines.
The first line contains two integers N(1N100000) and M(0M1000).
Then M lines follow, each line contains two integers Xi,Yi(1Xi<YiN).
The input end with N=0,M=0.

Output

For each test case in the input, you should output a line indicating the expected dice throwing times. Output should be rounded to 4 digits after decimal point.

Sample Input

2 0
8 3
2 4
4 5
7 8
0 0

Sample Output

1.1667
2.3441


题意

数轴上有 N+1 个点(编号 0N ),一个人玩游戏,从 0 出发,当到达N或大于 N 的点则游戏结束。每次行动掷骰子一次,骰子编号16,掷到多少就向前走几步,这个数轴上还有些特殊点,可以从 Xi Yi 。求总共投掷骰子次数的期望。

分析

期望dp.(期望dp一般逆推)
定义 dp[i] 表示在 i 时距离游戏结束还要投掷骰子次数的期望。
1. 对于可以直接飞的点,dp[i]=dp[fly[i]].
2. 不能飞的点,

dp[i]=6j=1dp[i+j]6+1

dp[i]=dp[i+1]+dp[i+2]+dp[i+3]+...+dp[i+6]6+1

CODE
#include<cstdio>
#include<memory.h>
#define N 100005
#define FOR(i,a,b)  for(int i=(a),i##_END_=(b);i<=i##_END_;i++)
#define ROF(i,a,b)  for(int i=(a),i##_END_=(b);i>=i##_END_;i--)
double dp[N];
int fly[N];

int main() {
    int n,m;
    while(~scanf("%d%d",&n,&m)&&(n||m)) {
        memset(fly,-1,sizeof fly);
        FOR(i,1,m) {
            int a,b;
            scanf("%d%d",&a,&b);
            fly[a]=b;
        }
        memset(dp,0,sizeof dp);
        ROF(i,n-1,0) {
            if(fly[i]==-1) {
                FOR(j,i+1,i+6)dp[i]+=dp[j]/6.0;
                dp[i]++;
            } else dp[i]=dp[fly[i]];
        }
        printf("%.4lf\n",dp[0]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值