codeforces 451E Devu and Flowers

本文探讨了一种使用隔板法和容斥原理解决组合数学中特定问题的方法,即在给定的盒子数量和球数下,求取能够拿出特定数量球的不同方案数。通过详细的算法描述和代码实现,展示了如何处理盒子数量限制和非法情况的排除,以准确计算方案数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1题目大意:给出n个盒子,每个盒子里有val[i]个球,想要拿出s个球,从每个盒子里拿出相同的球算同种方案,求方案数。

首先对于式子x_{1}+x_2+x_3+x_4+......x_n=s的非负整数解个数为C_{n+s-1}^{n-1},考虑隔板法,将s个东西分成n份,允许有空

相当于在s-1个空中放n-1个隔板,有空的盒子可以相当于先加上盒子个数个小球,真实计算是再减去,所以就是n+s个东西

其中n+s-1个空选择n-1个放。但是这道题有个数限制,所以不合法的情况就是其中的盒子放多了,因为放多了1个就不合法

所以设不合法的情况为val[i]+1(PS:之后再放自己里都不合法,所以不必计算,也不少不重复)。那么减去所有1个盒子放

多的情况时,多减去了2个放多的情况。所以要用容斥原理,减去奇数个放多的情况,对于组合数可以枚举,因为n≤20。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define mode 1000000007
using namespace std;
typedef long long ll;
int n;
ll s,val[25],ans,now,gs,niv[25];
ll read()
{
    ll x=0,f=1;char ch;
    while(ch<'0'||ch>'9')  {if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return f*x;
}
ll C(ll x,ll y)
{
    if(x<y)return 0;
    ll as=1;
    for(ll i=x-y+1;i<=x;i++)
    {
        as=(as*(i%mode))%mode;
    }
    return as*niv[y]%mode;
}
int main()
{
    scanf("%d%lld",&n,&s);
    for(int i=1;i<=n;i++)
    {
        val[i]=read();
    }
    niv[1]=1;
    for(int i=2;i<=n;i++)niv[i]=(mode-mode/i)*niv[mode%i]%mode;
    niv[0]=1;
    for(int i=1;i<=n;i++)niv[i]=niv[i-1]*niv[i]%mode;
 	for(int i=0;i<=(1<<n)-1;i++)
 	{
 		gs=0,now=0; 
        for(int j=1;j<=n;j++)
        {
            if(1<<(j-1)&i)
            {
                gs++;now+=val[j]+1;
            }
        }	
        if(gs%2==0)ans+=C(s+n-now-1,n-1),ans%=mode;
        else ans-=C(s+n-now-1,n-1),ans%=mode;
    }
 	printf("%lld",(ans%mode+mode)%mode);
    return 0;
} 

 

### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值