作业21:
在跟踪的过程中,按照重叠率在每一帧生成200正,500负样本,并保存。
主函数:
import cv2
import sys
import os
import random
import numpy as np
from baby import read_directory, generate_randombox, solve_coincide
#(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
if __name__ == '__main__':
img_list= read_directory('./data/DragonBaby')
pass
# Set up tracker.
# Instead of MIL, you can also use
tracker_types = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN', 'MOSSE', 'CSRT']
tracker_type = tracker_types[7]
#if int(minor_ver) < 3:
#tracker = cv2.Tracker_create(tracker_type)
#else:
if tracker_type == 'BOOSTING':
tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
tracker = cv2.TrackerGOTURN_create()
if tracker_type == 'MOSSE':
tracker = cv2.TrackerMOSSE_create()
if tracker_type == "CSRT":
tracker = cv2.TrackerCSRT_create()
# Initialize tracker with first frame and bounding box
first_frame = cv2.imread(img_list[0])
# Uncomment the line below to select a different bounding box
init_bbox = cv2.selectROI(first_frame, False)
cv2.destroyAllWindows()
# 初始化只能在第一帧初始化
ok = tracker.init(first_frame, init_bbox)
for i in range(1, len(img_list)):
img=cv2.imread(img_list[i])
timer = cv2.getTickCount()
# Update tracker
ok, bbox = tracker.update(img)
p_idx=0
n_idx=0
while True:
new_r = generate_randombox(bbox)
ratio=solve_coincide(bbox,new_r)
print(ratio)
if ratio>=0.5 and p_idx<=200 :
imCrop = img[new_r[3]:new_r[1], new_r[0]:new_r[2], :]
res = cv2.resize(imCrop, (32, 32), interpolation=cv2.INTER_CUBIC)
cv2.imwrite('E:\\pratice\\homework21\\positive\\baby' + str(i) + str(p_idx)+'.jpg', res)
p_idx+=1
elif ratio<0.5 and n_idx<=500 :
imCrop = img[new_r[3]:new_r[1], new_r[0]:new_r[2], :]
res = cv2.resize(imCrop, (32, 32), interpolation=cv2.INTER_CUBIC)
cv2.imwrite('E:\\pratice\\homework21\\negative\\baby' + str(i) +str(n_idx)+ '.jpg', res)
n_idx+=1
if p_idx==200 and n_idx==500:
break
# Calculate Frames per second (FPS)
fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer);
# Draw bounding box
if ok:
# Tracking success
p1 = (int(bbox[0]), int(bbox[1]))
p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3]))
cv2.rectangle(img, p1, p2, (0, 0, 255), 2, 1)
L_x = int(bbox[0])
L_y = int(bbox[1])
R_x = int(bbox[0] + bbox[2])
R_y = int(bbox[1] + bbox[3])
w = np.array([L_x, L_y, R_x, R_y])
# Display tracker type on frame
cv2.putText(img, tracker_type + " Tracker", (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
# Display FPS on frame
cv2.putText(img, "FPS : " + str(int(fps)), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
# Display result
new_r = generate_randombox(bbox)
imCrop = img[new_r[3]:new_r[1], new_r[0]:new_r[2], :]
cv2.rectangle(img, (new_r[0], new_r[1]), (new_r[2], new_r[3]), (55, 255, 155), 2)
res = cv2.resize(imCrop, (32, 32), interpolation=cv2.INTER_CUBIC)
cv2.imshow("Tracking", img)
cv2.imwrite('pigy' + str(i) + '.jpg', res)
cv2.imshow("Tracking", img)
else:
# Tracking failure
cv2.putText(img, "Tracking failure detected", (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
# Display tracker type on frame
cv2.putText(img, tracker_type + " Tracker", (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
# Display FPS on frame
cv2.putText(img, "FPS : " + str(int(fps)), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2);
# Display result
#生成随机
new_r = generate_randombox(bbox)
cv2.rectangle(img, (new_r[0], new_r[1]), (new_r[2], new_r[3]), (55, 255, 155), 2)
res = cv2.resize(imCrop, (32, 32), interpolation=cv2.INTER_CUBIC)
imCrop = img[new_r[3]:new_r[1], new_r[0]:new_r[2], :]
cv2.imshow("Tracking", img)
cv2.imwrite('pigy' + str(i) + '.jpg', res)
#计算重叠率
# Exit if ESC pressed
k = cv2.waitKey(1000) & 0xff
if k == 27:
break
子函数:
import os
import cv2
import sys
import random
import numpy as np
array_of_img = [] # this if for store all of the image data
# this function is for read image,the input is directory name
def read_directory(directory_name):
# 定位到存放图片的目录
img_dir = directory_name + r"/img/"
# 定位到存放ground_truth的目录
#gt = directory_name+r'/groundtruth.txt'
# 生成img_dir目录下的所有图像
img_list = [img_dir+i for i in os.listdir(img_dir)]####str与list
#f=open(gt)
#gt_list = f.readlines()
return img_list
def mat_inter(box1, box2):
# 判断两个矩形是否相交
# box=(xA,yA,xB,yB)
L_x, L_y, R_x, R_y = box1
left_x_up, left_y_up, right_x_down, right_y_down = box2
lx = abs((L_x + R_x) / 2 - (left_x_up + right_x_down) / 2)
ly = abs((L_y + R_y) / 2 - (left_y_up + right_y_down) / 2)
sax = abs(L_x - R_x)
sbx = abs(left_x_up - right_x_down)
say = abs(L_y - R_y)
sby = abs(left_y_up - right_y_down)
if lx <= (sax + sbx) / 2 and ly <= (say + sby) / 2:
return True
else:
return False
def solve_coincide(box1, box2):
# box=(xA,yA,xB,yB)
# 计算两个矩形框的重合度
if mat_inter(box1, box2) == True:
L_x, L_y, R_x, R_y = box1
left_x_up, left_y_up, right_x_down, right_y_down = box2
col = min(R_x, right_x_down) - max(L_x, left_x_up)
row = min(R_y, right_y_down) - max(L_y, left_y_up)
intersection = col * row
area1 = abs(R_x - L_x) * abs(R_y - L_y)
area2 = abs(right_x_down - left_x_up) * abs(right_y_down - left_y_up)
coincide = abs(intersection / (area1 + area2 - intersection))
return coincide
else:
return False
def generate_randombox(bbox):
x = int(bbox[0]) +bbox[2] // 2 # r中的元素一定要分清楚Imcrop里谁是左X谁是右X谁是左Y谁是右,按这个对照imCrop = frame[right_y_down:left_y_up, left_x_up:right_x_down, :]
y = int(bbox[1]) +bbox[3] // 2 # //为python整除
left_x_up = x - random.randint(0, 100)
left_y_up = y + random.randint(0, 100) # 注意这里的调参
right_x_down = x + random.randint(5, 100)
right_y_down = y - random.randint(5, 100)
new_r = np.array([int(left_x_up), int(left_y_up), int(right_x_down), int(right_y_down)])
return new_r
本文介绍了一种基于视觉的目标跟踪方法,通过使用多种跟踪算法(如BOOSTING、MIL、KCF等),在视频序列中对目标进行实时跟踪。在跟踪过程中,每帧生成200个正样本和500个负样本,用于后续的模型训练。通过对目标位置的预测和更新,实现了对目标的稳定跟踪,并保存了样本以供进一步分析。
1万+

被折叠的 条评论
为什么被折叠?



