tf.train.ExponentialMovingAverage使用举例
import tensorflow as tf;
import numpy as np;
import matplotlib.pyplot as plt;
v1 = tf.Variable(0, dtype=tf.float32)
step = tf.Variable(tf.constant(0))
ema = tf.train.ExponentialMovingAverage(0.99, step)
maintain_average = ema.apply([v1])
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
print sess.run([v1, ema.average(v1)])
sess.run(tf.assign(v1, 5))
sess.run(maintain_average)
print sess.run([v1, ema.average(v1)])
sess.run(tf.assign(step, 10000))
sess.run(tf.assign(v1, 10))
sess.run(maintain_average)
print sess.run([v1, ema.average(v1)])
sess.run(maintain_average)
print sess.run([v1, ema.average(v1)])