UVA - 10132 File Fragmentation

本文详细探讨了在生物化学实验室中文件掉落并破碎后,如何通过已知的二进制碎片,利用编程技巧进行重组的方法。

Question 2: File Fragmentation

The Problem

Your friend, a biochemistry major, tripped while carrying a tray of computer files through the lab. All of the files fell to the ground and broke. Your friend picked up all the file fragments and called you to ask for help putting them back together again.

Fortunately, all of the files on the tray were identical, all of them broke into exactly two fragments, and all of the file fragments were found. Unfortunately, the files didn't all break in the same place, and the fragments were completely mixed up by their fall to the floor.

You've translated the original binary fragments into strings of ASCII 1's and 0's, and you're planning to write a program to determine the bit pattern the files contained.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

Input will consist of a sequence of ``file fragments'', one per line, terminated by the end-of-file marker. Each fragment consists of a string of ASCII 1's and 0's.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

Output is a single line of ASCII 1's and 0's giving the bit pattern of the original files. If there are 2N fragments in the input, it should be possible to concatenate these fragments together in pairs to make N copies of the output string. If there is no unique solution, any of the possible solutions may be output.

Your friend is certain that there were no more than 144 files on the tray, and that the files were all less than 256 bytes in size.

Sample Input

1

011
0111
01110
111
0111
10111

Sample Output

01110111


题意:

有n个相同的文件,将它们进行两段分离,形成2n的文件,要求出原来的文件;

找出2n文件中中最长以及最短的文件,并把两者进行相加,得到原来文件的长度 len,将各自的字符串进行连接, 

然后两个进行拼接,利用一个map的second来保存各自两个出现的次数;出现最多次数的文件,就是原来的文件;

记住题目数据的输入;空行以及回车键;


#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
#include <string>
using namespace std;
#define N 500

string str[N];
map<string,int> m;

int main () {
	char s[N];
	int n; 	cin >> n;
	getchar(); 
	gets(s);
	while (n--) {
		int k = 0;
		while (gets(s)) {
			if (s[0] == '\0') break;
			str[k++] = s;
		}			

		int Min = 10000, Max = 0;
		for (int i = 0; i < k; i++) {
			if (Min > str[i].size()) Min = str[i].size();
			if (Max < str[i].size()) Max = str[i].size();
		}
		int len = Min + Max;
		map<string,int> ::iterator it;
		m.clear();
		for (int i = 0; i < k;i++)
			for (int j = i+1; j < k;j++) {
				string temp = str[i] + str[j];
				if (temp.size() == len) {
					it = m.find(temp);
					if (it != m.end())	m[temp]++;
					else m[temp] = 1;
				}
				temp = str[j] + str[i];
				if (temp.size() == len) {
					it = m.find(temp);	
					if (it != m.end()) m[temp]++;
					else m[temp] = 1;
				}
			}

		int flag = 0;
		string ans;
		for (it = m.begin(); it != m.end(); it++) {
			if (it->second > flag) {
				flag = it->second;
				ans = it->first;
			}
		}
		cout << ans << endl;
		if (n) printf("\n");
	}
return 0;
}



内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值