Factor Analysis (1)

本文探讨了在训练样本数量远小于特征数量时所面临的挑战,介绍了如何通过限制协方差矩阵来解决这些问题,并详细解释了因子分析的基本原理及其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 问题

     之前我们考虑的训练数据中样例clip_image002的个数m都远远大于其特征个数n,这样不管是进行回归、聚类等都没有太大的问题。然而当训练样例个数m太小,甚至m<<n的时候,使用梯度下降法进行回归时,如果初值不同,得到的参数结果会有很大偏差(因为方程数小于参数个数)。另外,如果使用多元高斯分布(Multivariate Gaussian distribution)对数据进行拟合时,也会有问题。让我们来演算一下,看看会有什么问题:

多元高斯分布的参数估计公式如下:

     clip_image004

     clip_image006

     分别是求mean和协方差的公式,clip_image002[1]表示样例,共有m个,每个样例n个特征,因此clip_image008是n维向量,clip_image010是n*n协方差矩阵。

     当m<<n时,我们会发现clip_image010[1]是奇异阵(clip_image012),也就是说clip_image014不存在,没办法拟合出多元高斯分布了,确切的说是我们估计不出来clip_image010[2]

     如果我们仍然想用多元高斯分布来估计样本,那怎么办呢?

2 限制协方差矩阵

     当没有足够的数据去估计clip_image010[3]时,那么只能对模型参数进行一定假设,之前我们想估计出完全的clip_image010[4](矩阵中的全部元素),现在我们假设clip_image010[5]就是对角阵(各特征间相互独立),那么我们只需要计算每个特征的方差即可,最后的clip_image010[6]只有对角线上的元素不为0

     clip_image016

     回想我们之前讨论过的二维多元高斯分布的几何特性,在平面上的投影是个椭圆,中心点由clip_image008[1]决定,椭圆的形状由clip_image010[7]决定。clip_image010[8]如果变成对角阵,就意味着椭圆的两个轴都和坐标轴平行了。

     clip_image018

     如果我们想对clip_image010[9]进一步限制的话,可以假设对角线上的元素都是等值的。

     clip_image020

     其中

     clip_image022

     也就是上一步对角线上元素的均值,反映到二维高斯分布图上就是椭圆变成圆。

     当我们要估计出完整的clip_image010[10]时,我们需要m>=n+1才能保证在最大似然估计下得出的clip_image010[11]是非奇异的。然而在上面的任何一种假设限定条件下,只要m>=2都可以估计出限定的clip_image010[12]

     这样做的缺点也是显然易见的,我们认为特征间独立,这个假设太强。接下来,我们给出一种称为因子分析的方法,使用更多的参数来分析特征间的关系,并且不需要计算一个完整的clip_image010[13]

3 边缘和条件高斯分布

     在讨论因子分析之前,先看看多元高斯分布中,条件和边缘高斯分布的求法。这个在后面因子分析的EM推导中有用。

     假设x是有两个随机向量组成(可以看作是将之前的clip_image024分成了两部分)

     clip_image026

     其中clip_image028clip_image030,那么clip_image032。假设x服从多元高斯分布clip_image034,其中

     clip_image035

     其中clip_image037clip_image039,那么clip_image041clip_image043,由于协方差矩阵是对称阵,因此clip_image045

     整体看来clip_image047clip_image049联合分布符合多元高斯分布。

     那么只知道联合分布的情况下,如何求得clip_image047[1]的边缘分布呢?从上面的clip_image008[2]clip_image010[14]可以看出,

     clip_image051,clip_image053,下面我们验证第二个结果

     clip_image054

     由此可见,多元高斯分布的边缘分布仍然是多元高斯分布。也就是说clip_image056

     上面Cov(x)里面有趣的是clip_image058,这个与之前计算协方差的效果不同。之前的协方差矩阵都是针对一个随机变量(多维向量)来说的,而clip_image058[1]评价的是两个随机向量之间的关系。比如clip_image060={身高,体重},clip_image049[1]={性别,收入},那么clip_image062求的是身高与身高,身高与体重,体重与体重的协方差。而clip_image058[2]求的是身高与性别,身高与收入,体重与性别,体重与收入的协方差,看起来与之前的大不一样,比较诡异的求法。

     上面求的是边缘分布,让我们考虑一下条件分布的问题,也就是clip_image064的问题。根据多元高斯分布的定义,clip_image066

     且

     clip_image067

     这是我们接下来计算时需要的公式,这两个公式直接给出,没有推导过程。如果想了解具体的推导过程,可以参见Chuong B. Do写的《Gaussian processes》。

4 因子分析例子

     下面通过一个简单例子,来引出因子分析背后的思想。

     因子分析的实质是认为m个n维特征的训练样例clip_image069的产生过程如下:

     1、 首先在一个k维的空间中按照多元高斯分布生成m个clip_image071(k维向量),即

     clip_image073

     2、 然后存在一个变换矩阵clip_image075,将clip_image071[1]映射到n维空间中,即

     clip_image077

     因为clip_image071[2]的均值是0,映射后仍然是0。

     3、 然后将clip_image079加上一个均值clip_image008[3](n维),即

     clip_image081

     对应的意义是将变换后的clip_image079[1](n维向量)移动到样本clip_image002[2]的中心点clip_image008[4]

     4、 由于真实样例clip_image002[3]与上述模型生成的有误差,因此我们继续加上误差clip_image083(n维向量),

     而且clip_image083[1]符合多元高斯分布,即

     clip_image085

     clip_image087

     5、 最后的结果认为是真实的训练样例clip_image002[4]的生成公式

     clip_image089

     让我们使用一种直观方法来解释上述过程:

     假设我们有m=5个2维的样本点clip_image002[5](两个特征),如下:

clip_image090

     那么按照因子分析的理解,样本点的生成过程如下:

     1、 我们首先认为在1维空间(这里k=1),存在着按正态分布生成的m个点clip_image092,如下

clip_image095

     均值为0,方差为1。

     2、 然后使用某个clip_image097将一维的z映射到2维,图形表示如下:

clip_image100

     3、 之后加上clip_image102,即将所有点的横坐标移动clip_image104,纵坐标移动clip_image106,将直线移到一个位置,使得直线过点clip_image008[5],原始左边轴的原点现在为clip_image008[6](红色点)。

clip_image111

     然而,样本点不可能这么规则,在模型上会有一定偏差,因此我们需要将上步生成的点做一些扰动(误差),扰动clip_image113

     4、 加入扰动后,我们得到黑色样本clip_image002[6]如下:

clip_image118

     5、 其中由于z和clip_image119的均值都为0,因此clip_image008[7]也是原始样本点(黑色点)的均值。

     由以上的直观分析,我们知道了因子分析其实就是认为高维样本点实际上是由低维样本点经过高斯分布、线性变换、误差扰动生成的,因此高维数据可以使用低维来表示。

基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值