Chapter 23: Termination Handlers(2)Understanding Termination Handlers by Example(5)

本文详细介绍了finally块在程序执行过程中的作用,包括三种触发执行的情形:正常流程、局部回溯和全局回溯。并通过intrinsic函数AbnormalTermination来判断finally块执行的原因。此外,展示了如何在Funcfurter2函数中利用finally块进行错误处理,并阐述了使用终止处理器的好处,如简化错误处理、提高程序可读性和维护性,以及正确使用时的最小速度和大小开销。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Notes About the finally Block

So far we have explicitly identified two scenarios that force the finally block to be executed:

到目前为止,我们确定的两种导致finally执行的情形:

  • Normal flow of control from the try block into the finally block 

    正常情况,从try中进入

  • Local unwind: premature exit from the try block (goto,longjump,continue,break, return, and so on) forcing control to the finally block

    Local unwind,使用goto等导致提前退出try

A third scenario—a global unwind—occurred without explicit identification as such in the Funcfurter1 function we saw on page 663. Inside the try block of this function was a call to the Funcinator function. Before Windows Vista, if the Funcinator function caused a memory access violation, a global unwind caused Funcfurter1's finally block to execute. As of Windows Vista, a global unwind is not triggered by default, so the finally block is not executed. "The SEH Termination Sample Application" on page 673 gives you a first glance at what triggers a global unwind, and we'll look at global unwinding in greater detail in the next two chapters.

第三种情形----global unwind----?

Code in a finally block always starts executing as a result of one of these three situations. To determine which of the three possibilities caused the finally block to execute, you can call the intrinsic function AbnormalTermination:

可以通过函数判断是因为什么导致finally被执行

BOOL AbnormalTermination();

 Note 

An intrinsic function is a special function recognized by the compiler. The compiler generates the code for the function inline rather than generating code to call the function. For example, memcpy is an intrinsic function (if the/Oi compiler switch is specified). When the compiler sees a call tomemcpy, it puts thememcpy code directly into the function that calledmemcpy instead of generating a call to thememcpy function. This usually has the effect of making your code run faster at the expense of code size.

The intrinsic AbnormalTermination function is different from the intrinsicmemcpy function in that it exists only in an intrinsic form. No C/C++ run-time library contains theAbnormalTermination function.

This intrinsic function can be called only from inside a finally block, and it returns a Boolean value indicating whether the try block associated with the finally block was exited prematurely. In other words, if the flow of control leaves the try block and naturally enters the finally block, AbnormalTermination will return FALSE. If the flow of control exits the try block abnormally— usually because a local unwind has been caused by a goto,return,break, or continue statement or because a global unwind has been caused by a memory access violation or another exception— a call to AbnormalTermination will return TRUE. It is impossible to determine whether a finally block is executing because of a global unwind or because of a local unwind. This is usually not a problem because you have, of course, avoided writing code that performs local unwinds.

这个函数只能在finally中被调用,它的返回值表明try中的代码是否提前退出了。换句话说,如果流程是自然进入finally,这个函数返回FALSE。如果是提前退出try或者是由其他异常产生的global unwind,这个函数返回TRUE。目前没办法区别local unwind和global unwind。通常这不是问题,因为你可以在写代码的时候避免local unwind。

Funcfurter2

Here is Funcfurter2, which demonstrates use of the AbnormalTermination intrinsic function:

DWORD Funcfurter2() {
   DWORD dwTemp;

   // 1. Do any processing here.
   ...
   __try {
      // 2. Request permission to access
      //    protected data, and then use it.
      WaitForSingleObject(g_hSem, INFINITE);

      dwTemp = Funcinator(g_dwProtectedData);
   }
   __finally {
      // 3. Allow others to use protected data.
      ReleaseSemaphore(g_hSem, 1, NULL);

      if (!AbnormalTermination()) {
         // No errors occurred in the try block, and
         // control flowed naturally from try into finally.
         ...
      } else {
         // Something caused an exception, and
         // because there is no code in the try block
         // that would cause a premature exit, we must
         // be executing in the finally block
         // because of a global unwind.

         // If there were a goto in the try block,
         // we wouldn't know how we got here.
         ...
      }
   }

   // 4. Continue processing.
   return(dwTemp);
}

Now that you know how to write termination handlers, you'll see that they can be even more useful and important when we look at exception filters and exception handlers in the next chapter. Before we move on, let's review the reasons for using termination handlers:

  • They simplify error processing because all cleanup is in one location and is guaranteed to execute.

  • They improve program readability.

  • They make code easier to maintain.

  • They have minimal speed and size overhead if used correctly.


内容概要:本文深入探讨了Kotlin语言在函数式编程和跨平台开发方面的特性和优势,结合详细的代码案例,展示了Kotlin的核心技巧和应用场景。文章首先介绍了高阶函数和Lambda表达式的使用,解释了它们如何简化集合操作和回调函数处理。接着,详细讲解了Kotlin Multiplatform(KMP)的实现方式,包括共享模块的创建和平台特定模块的配置,展示了如何通过共享业务逻辑代码提高开发效率。最后,文章总结了Kotlin在Android开发、跨平台移动开发、后端开发和Web开发中的应用场景,并展望了其未来发展趋势,指出Kotlin将继续在函数式编程和跨平台开发领域不断完善和发展。; 适合人群:对函数式编程和跨平台开发感兴趣的开发者,尤其是有一定编程基础的Kotlin初学者和中级开发者。; 使用场景及目标:①理解Kotlin中高阶函数和Lambda表达式的使用方法及其在实际开发中的应用场景;②掌握Kotlin Multiplatform的实现方式,能够在多个平台上共享业务逻辑代码,提高开发效率;③了解Kotlin在不同开发领域的应用场景,为选择合适的技术栈提供参考。; 其他说明:本文不仅提供了理论知识,还结合了大量代码案例,帮助读者更好地理解和实践Kotlin的函数式编程特性和跨平台开发能力。建议读者在学习过程中动手实践代码案例,以加深理解和掌握。
内容概要:本文深入探讨了利用历史速度命令(HVC)增强仿射编队机动控制性能的方法。论文提出了HVC在仿射编队控制中的潜在价值,通过全面评估HVC对系统的影响,提出了易于测试的稳定性条件,并给出了延迟参数与跟踪误差关系的显式不等式。研究为两轮差动机器人(TWDRs)群提供了系统的协调编队机动控制方案,并通过9台TWDRs的仿真和实验验证了稳定性和综合性能改进。此外,文中还提供了详细的Python代码实现,涵盖仿射编队控制类、HVC增强、稳定性条件检查以及仿真实验。代码不仅实现了论文的核心思想,还扩展了邻居历史信息利用、动态拓扑优化和自适应控制等性能提升策略,更全面地反映了群体智能协作和性能优化思想。 适用人群:具备一定编程基础,对群体智能、机器人编队控制、时滞系统稳定性分析感兴趣的科研人员和工程师。 使用场景及目标:①理解HVC在仿射编队控制中的应用及其对系统性能的提升;②掌握仿射编队控制的具体实现方法,包括控制器设计、稳定性分析和仿真实验;③学习如何通过引入历史信息(如HVC)来优化群体智能系统的性能;④探索中性型时滞系统的稳定性条件及其在实际系统中的应用。 其他说明:此资源不仅提供了理论分析,还包括完整的Python代码实现,帮助读者从理论到实践全面掌握仿射编队控制技术。代码结构清晰,涵盖了从初始化配置、控制律设计到性能评估的各个环节,并提供了丰富的可视化工具,便于理解和分析系统性能。通过阅读和实践,读者可以深入了解HVC增强仿射编队控制的工作原理及其实际应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值