Hadoop(16) MR 倒排索引

本文介绍倒排索引的基本概念及其在搜索引擎中的应用,并通过Hadoop MapReduce框架详细展示了如何实现一个简单的倒排索引系统,包括Mapper和Reducer的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倒排索引(Inverted Index):倒排索引是实现“单词-文档矩阵”的一种具体存储形式,通过倒排索引,可以根据单词快速获取包含这个单词的文档列表。倒排索引主要由两个部分组成:“单词词典”和“倒排文件”。
单词-文档矩阵

比如有文档
a.txt
      hello tom
      hello jerry
      hello tom
b.txt
      hello jerry
      hello jerry
      tom jerry
c.txt
      hello jerry
      hello tom

要求统计结果为:
hello “a.txt->3 b.txt->2 c.txt->2”
jerry “a.txt->1 b.txt->3 c.txt->1”
tom “a.txt->2 b.txt->1 c.txt->1”

分析:

—————————Mapper阶段—————————–
将单词和文章名称作为key, 循环context.write(key, 1)
context.write(“hello->a.txt”,1);
context.write(“hello->a.txt”,1);
context.write(“hello->a.txt”,1);

reducer即将接收的数据:<”hello->a.txt”, {1, 1, 1}>

—————————Reducer阶段—————————-
context.write(“hello->a.txt”, 3);
context.write(“hello->b.txt”, 2);
context.write(“hello->c.txt”, 2);

—————————Mapper阶段—————————–
context.write(“hello”,”a.txt->3”);
context.write(“hello”,”b.txt->2”);
context.write(“hello”,”c.txt->2”);

—————————Reducer阶段—————————-
context.write(“hello”,”a.txt->3 b.txt->2 c.txt->2”);

—————————–最终结果—————————–
hello “a.txt->3 b.txt->2 c.txt->2”
jerry “a.txt->1 b.txt->3 c.txt->1”
tom “a.txt->2 b.txt->1 c.txt->1”


简单实现

package com.zz.hadoop.dc.inverse;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * 倒排索引
 *
 */
public class InverseIndex {
    public static void main(String[] args) throws Exception {
        InverseIndex.class.newInstance().init(args);
    }

    public void init(String[] args)
            throws IOException, ClassNotFoundException, InterruptedException {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf);
        // 设置jar
        job.setJarByClass(InverseIndex.class);
        // 设置Mapper相关的属性
        job.setMapperClass(IndexMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        // 设置Reducer相关属性
        job.setReducerClass(IndexReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        // 设置combiner
        job.setCombinerClass(IndexCombiner.class);
        // 提交任务
        job.waitForCompletion(true);
    }

    public class IndexMapper
            extends Mapper<LongWritable, Text, Text, LongWritable> {
        private Text k2 = new Text();
        private LongWritable v2 = new LongWritable();

        /**
         * 将单词和文章名称作为key, 循环context.write(key, 1)
         * context.write("hello->a.txt", 1);
         */
        @Override
        protected void map(LongWritable k1, Text v1,
                Mapper<LongWritable, Text, Text, LongWritable>.Context context)
                throws IOException, InterruptedException {
            String[] fields = v1.toString().split(" ");
            // 获取切片路径(每一个mapper对应一个split)
            FileSplit inputSplit = (FileSplit) context.getInputSplit();
            Path path = inputSplit.getPath();
            String fileName = path.getName();
            for (String field : fields) {
                this.k2.set(field + "->" + fileName);
                this.v2.set(1);
                context.write(k2, v2);
            }
        }
    }

    /**
     * 进行一次combiner 将单词在每一篇文章出现的次数进行一次小计
     */
    public class IndexCombiner extends Reducer<Text, LongWritable, Text, Text> {
        private Text k = new Text();
        private Text v = new Text();

        /**
         * 接入数据输入为:<"hello->a.txt", {1, 1, 1}>
         * 将数据输出变为:context.write("hello","a.txt->3");
         */
        @Override
        protected void reduce(Text k2, Iterable<LongWritable> v2s,
                Reducer<Text, LongWritable, Text, Text>.Context context)
                throws IOException, InterruptedException {
            String[] wordAndFileName = k2.toString().split("->");
            int counter = 0;
            for (LongWritable v2 : v2s) {
                counter += v2.get();
            }
            k.set(wordAndFileName[0]);
            v.set(wordAndFileName[1] + "->" + counter);
            context.write(k, v);
        }
    }

    public class IndexReducer extends Reducer<Text, Text, Text, Text> {
        private Text val = new Text();

        /**
         * 接入数据输入为:<"hello", {"a.txt->3", "b.txt->2", "c.txt->1"}>
         * 将数据输出变为:<"hello", "a.txt->3 b.txt->2 c.txt->1">
         */
        @Override
        protected void reduce(Text k3, Iterable<Text> v3s,
                Reducer<Text, Text, Text, Text>.Context context)
                throws IOException, InterruptedException {
            StringBuffer sb = new StringBuffer();
            for (Text v3 : v3s) {
                sb.append(v3.toString() + " ");
            }
            val.set(sb.toString().trim());
            context.write(k3, val);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值