第四章 自然语言处理技术突破
4.1 智能问答系统演进
从规则引擎到GPT-4的范式转移
class QAEvolution:
def __init__(self):
self.rule_engine = RuleBasedQA()
self.retrieval_model = DPR()
self.generative_model = GPT4()
def answer_question(self, question, context):
# 规则引擎阶段
if self.rule_engine.can_answer(question):
return self.rule_engine.answer(question)
# 检索阶段
relevant_docs = self.retrieval_model.retrieve(question)
if relevant_docs:
return self.retrieval_model.answer(question, relevant_docs)
# 生成阶段
return self.generative_model.generate(question, context)
技术演进路线:
-
规则引擎时代(2000-2010)
- 基于正则表达式的模式匹配
- 有限状态自动机
- 准确率:~45%
-
检索式问答(2010-2018)
- 基于TF-IDF/BERT的文档检索
- 阅读理解模型(BiDAF)
- 准确率:~68%
-
生成式问答(2018-至今)
- Transformer架构
- 预训练-微调范式
- 准确率:~85%
学科专用语言模型微调
class DomainSpecificLM:
def __init__(self, base_model):
self.base_model = base_model
def fine_tune(self, domain_data):
# 领域自适应预训练
self.domain_model = self.base_model.continue_pretraining(
domain_data,
learning_rate=5e-5,
num_steps=10000
)
# 任务特定微调
self.task_model = self.domain_model.fine_tune(
task_data,
learning_rate=2e-5,
num_epochs=3
)
def generate(self, prompt):
return self.task_model.generate(
prompt,
max_length=200,
temperature=0.7
)
多轮对话中的认知引导
class CognitiveDialogue:
def __init__(self):
self.dialogue_manager = DialogueManager()
self.cognitive_model = CognitiveModel()
def conduct_dialogue(self, user_input):
# 认知状态评估
cognitive_state = self.cognitive_model.assess(user_input)
# 对话策略选择
strategy = self._select_strategy(cognitive_state)
# 生成引导性回复
return self.dialogue_manager.generate_response(
user_input,
strategy
)
def _select_strategy(self, state):
if state == "confused":
return "clarification"
elif state == "bored":
return "engagement"
elif state == "frustrated":
return "encouragement"
4.2 作文批改的革命
语义网络分析算法
class SemanticAnalyzer:
def __init__(self):
self.parser = DependencyParser()
self.semantic_net = SemanticNetwork()
def analyze_essay(self, text):
# 依存分析
dependencies = self.parser.parse(text)
# 构建语义网络
network = self.semantic_net.build(dependencies)
# 计算语义连贯性
coherence = self._calculate_coherence(network)
return {
"network": network,
"coherence": coherence
}
def _calculate_coherence(self, network):
return network.global_clustering_coefficient()
风格迁移与创意评价
class StyleTransfer:
def __init__(self):
self.style_encoder = StyleEncoder()
self.content_encoder = ContentEncoder()
self.decoder = Decoder()
def transfer_style(self, text, target_style):
# 编码内容和风格
content_vec = self.content_encoder.encode(text)
style_vec = self.style_encoder.encode(target_style)
# 风格迁移
return self.decoder.decode(content_vec, style_vec)
def evaluate_creativity(self, text):
# 计算创意指数
return self.style_encoder.calculate_novelty(text)
跨语言写作能力评估
class CrosslingualEvaluator:
def __init__(self):
self.translator = Translator()
self.evaluator = WritingEvaluator()
def evaluate(self, text, target_lang):
# 翻译到目标语言
translated = self.translator.translate(text, target_lang)
# 评估写作质量
return self.evaluator.evaluate(translated)
4.3 语音交互新维度
发音错误多模态检测
class PronunciationAnalyzer:
def __init__(self):
self.acoustic_model = AcousticModel()
self.articulation_model = ArticulationModel()
def analyze(self, audio, video):
# 声学特征分析
acoustic_features = self.acoustic_model.extract(audio)
# 发音器官运动分析
articulation_features = self.articulation_model.extract(video)
# 错误检测
return self._detect_errors(acoustic_features, articulation_features)
def _detect_errors(self, acoustic, articulation):
# 使用多模态融合检测发音错误
return self.error_detector.detect(
acoustic,
articulation
)
课堂语音情感热力图
class EmotionHeatmap:
def __init__(self):
self.voice_analyzer = VoiceAnalyzer()
self.visualizer = HeatmapVisualizer()
def generate(self, classroom_audio):
# 语音情感分析
emotions = self.voice_analyzer.analyze(classroom_audio)
# 生成热力图
return self.visualizer.visualize(emotions)
实时翻译中的文化适配
class CulturalAdapter:
def __init__(self):
self.translator = Translator()
self.cultural_knowledge = CulturalKnowledgeBase()
def translate(self, text, target_culture):
# 初步翻译
translated = self.translator.translate(text)
# 文化适配
return self.cultural_knowledge.adapt(translated, target_culture)