ThreadLocal原理
ThreadLocal的原理:每个Thread内部维护着一个ThreadLocalMap,它是一个Map。这个映射表的Key是一个弱引用,其实就是ThreadLocal本身,Value是真正存的线程变量Object。
也就是说ThreadLocal本身并不真正存储线程的变量值,它只是一个工具,用来维护Thread内部的Map,帮助存和取。注意上图的虚线,它代表一个弱引用类型,而弱引用的生命周期只能存活到下次GC前。
ThreadLocal为什么会内存泄漏
ThreadLocal在ThreadLocalMap中是以一个弱引用身份被Entry中的Key引用的,因此如果ThreadLocal没有外部强引用来引用它,那么ThreadLocal会在下次JVM垃圾收集时被回收。这个时候就会出现Entry中Key已经被回收,出现一个null Key的情况,外部读取ThreadLocalMap中的元素是无法通过null Key来找到Value的。因此如果当前线程的生命周期很长,一直存在,那么其内部的ThreadLocalMap对象也一直生存下来,这些null key就存在一条强引用链的关系一直存在:Thread --> ThreadLocalMap-->Entry-->Value,这条强引用链会导致Entry不会回收,Value也不会回收,但Entry中的Key却已经被回收的情况,造成内存泄漏。
但是JVM团队已经考虑到这样的情况,并做了一些措施来保证ThreadLocal尽量不会内存泄漏:在ThreadLocal的get()、set()、remove()方法调用的时候会清除掉线程ThreadLocalMap中所有Entry中Key为null的Value,并将整个Entry设置为null,利于下次内存回收。
首先当然是看一下我们的主角ThreadLocal类,只保留了几个重点的地方,特别的是内部静态类的ThreadLocalMap是ThreadLocal自己实现的一个Map,而这个Map用使用了ThreadLocal作为了一个弱引用的Key(也就是主要问题点)。
public class ThreadLocal<T> {
// 获取Thread里面的Map
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
void createMap(Thread t, T firstValue) {
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
// (敲黑板)
// 这里是重点!!!
static class ThreadLocalMap {
// 这里是凶器!!!
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
...
}
...
}
接着不得不说的就是我们的大佬Thread类,里面关于ThreadLocal部分的内容主要是这样滴。我们可以看到这里主要是声明了ThreadLocal里面的Map作为类变量来提供给线程使用的。也正式因为如此,才会在ThreadLocal里面的getMap方法是拉取的Thread里面的Map。
public class Thread implements Runnable {
/* ThreadLocal values pertaining to this thread. This map is maintained
* by the ThreadLocal class.
*/
ThreadLocal.ThreadLocalMap threadLocals = null;
/*
* InheritableThreadLocal values pertaining to this thread. This map is
* maintained by the InheritableThreadLocal class.
*/
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
- 于是到这里我们就明白了,其实每个Thread里面都有一个Map,Map里面的Key是ThreadLocal类的一个实例,之所以会比较混淆主要还是因为这里的Map又是ThreadLocal里面的一个内部静态类。
为什么使用弱引用?
从表面上看,发生内存泄漏,是因为Key使用了弱引用类型。但其实是因为整个Entry的key为null后,没有主动清除value导致。很多文章大多分析ThreadLocal使用了弱引用会导致内存泄漏,但为什么使用弱引用而不是强引用?
下面我们分两种情况讨论:
- key 使用强引用:引用的ThreadLocal的对象被回收了,但是ThreadLocalMap还持有ThreadLocal的强引用,如果没有手动删除,ThreadLocal不会被回收,导致Entry内存泄漏。
- key 使用弱引用:引用的ThreadLocal的对象被回收了,由于ThreadLocalMap持有ThreadLocal的弱引用,即使没有手动删除,ThreadLocal也会被回收。value在下一次ThreadLocalMap调用set,get,remove的时候会被清除。
比较两种情况,我们可以发现:由于ThreadLocalMap的生命周期跟Thread一样长,如果都没有手动删除对应key,都会导致内存泄漏,但是使用弱引用可以多一层保障:弱引用ThreadLocal不会内存泄漏,对应的value在下一次ThreadLocalMap调用set,get,remove的时候会被清除。
因此,ThreadLocal内存泄漏的根源是:由于ThreadLocalMap的生命周期跟Thread一样长,如果没有手动删除对应key的value就会导致内存泄漏,而不是因为弱引用。
另一个解释:
不妨反过来想想,如果使用强引用,当ThreadLocal对象(假设为ThreadLocal@123456)的引用(即:TL_INT,是一个强引用,指向ThreadLocal@123456)被回收了,ThreadLocalMap本身依然还持有ThreadLocal@123456的强引用,如果没有手动删除这个key,则ThreadLocal@123456不会被回收,所以只要当前线程不消亡,ThreadLocalMap引用的那些对象就不会被回收,可以认为这导致Entry内存泄漏。
那使用弱引用的好处呢?
如果使用弱引用,那指向ThreadLocal@123456对象的引用就两个:TL_INT强引用,和ThreadLocalMap中Entry的弱引用。一旦TL_INT被回收,则指向ThreadLocal@123456的就只有弱引用了,在下次gc的时候,这个ThreadLocal@123456就会被回收。
那么问题来了,ThreadLocal@123456对象只是作为ThreadLocalMap的一个key而存在的,现在它被回收了,但是它对应的value并没有被回收,内存泄露依然存在!而且key被删了之后,变成了null,value更是无法被访问到了!针对这一问题,ThreadLocalMap类的设计本身已经有了这一问题的解决方案,那就是在每次get()/set()/remove()ThreadLocalMap中的值的时候,会自动清理key为null的value。如此一来,value也能被回收了。
既然对key使用弱引用,能使key自动回收,那为什么不对value使用弱引用?答案显而易见,假设往ThreadLocalMap里存了一个value,gc过后value便消失了,那就无法使用ThreadLocalMap来达到存储全线程变量的效果了。(但是再次访问该key的时候,依然能取到value,此时取得的value是该value的初始值。即在删除之后,如果再次访问,取到null,会重新调用初始化方法。)
参考:
https://www.jianshu.com/p/a1cd61fa22da
https://www.jianshu.com/p/250798f9ff76
https://blog.youkuaiyun.com/puppylpg/article/details/80433271