Spark out of memory相关问题

本文详细解析了在使用Spark过程中遇到的Java heap space和GC overhead limit exceeded错误的原因,并提供了两种有效的解决方法:通过spark-submit命令行参数调整driver内存大小或修改spark-defaults.conf配置文件。通过实施这些解决方案,可以避免在处理大量数据时因内存不足导致的任务失败。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Spark OOM:java heap space,OOM:GC overhead limit exceeded解决方法

1.1问题描述:

在使用spark过程中,有时会因为数据增大,而出现下面两种错误:

java.lang.OutOfMemoryError: Java heap space

java.lang.OutOfMemoryError:GC overhead limit exceeded

这两种错误之前我一直认为是executor的内存给的不够,但是仔细分析发现其实并不是executor内存给的不足,而是driver的内存给的不足。在standalone client模式下用spark-submit提交任务时(standalone模式部署时,默认使用的就是standalone client模式提交任务),我们自己写的程序(main)被称为driver,在不指定给driver分配内存时,默认分配的是512M。在这种情况下,如果处理的数据或者加载的数据很大(我是从hive中加载数据),driver就可能会爆内存,出现上面的OOM错误。

 1.2解决方法:

参考:http://spark.apache.org/docs/latest/configuration.html

方法一:在spark-submit中指定 --driver-memory memSize参数来设定driver的jvm内存大小,可以通过spark-submit --help查看其他可以设置的参数。

eg:

复制代码
./spark-submit \
  --master spark://7070 \
  --class $MAIN_CLASS \
  --executor-memory 3G \
  --total-executor-cores 10 \
  --driver-memory 2g \
  --name $APP_NAME \
  --conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps" \
  "$SPARK_APP_JAR" 
复制代码

方法二:在spark_home/conf/目录中,将spark-defaults.conf.template模板文件拷贝一份到/spark_home/conf目录下,命名为spark-defaults.conf,然后在里面设置spark.driver.memory  memSize属性来改变driver内存大小。

eg:

 spark.master                       spark://master:7077
 spark.default.parallelism          10
 spark.driver.memory                2g
 spark.serializer                   org.apache.spark.serializer.KryoSerializer
 spark.sql.shuffle.partitions       50
2.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值