浅谈char类型范围

在 C 语言中, signed char 类型的范围为 -128~127,每本教科书上也这么写,但是没有哪一本书上(包括老师)也不会给你为什么是 -128~127,这个问题貌似看起来也很简单容易, 以至于不用去思考为什么,不是有一个整型范围的公式吗:  -2^(n-1)~2^(n-1)-1 (n为整型的内存占用位数),所以 int 类型 32 位那么就是 -(2^31) ~ 2^31-1 即 -2147483648~2147483647,但是为什么最小负数绝对值总比最大正数多 1 ,这个问题甚至有的工作几年的程序员都模棱两可,因为没有深入思考过,只知道书上这么写。于是,我不得不深入思考一下这个被许多人忽视的问题。

对于无符号整数,很简单,全部位都表示数值,比如 char 型,8位,用二进制表示为 0000 0000 ~ 1111 1111,1111 1111 最大即为十进制255,所以 unsigned char 的范围为 0~ 255,在这里普及一下 2 进制转十进制的方法, 二进制每一位的数值乘以它的位权(2^(n-1),n为自右向左的位),再相加,可得到十进制数,比如 :1111 1111 = 1*2^7 + 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 255 。


但是对于有符号整数,二进制的最高位表示正负,不表示数值,最高位为 0 时表示正数,为 1 时表示负数,这样一来,能表示数值的就剩下( n-1 )位了,比如 char a = -1;   那么二进制表示就为 1 0000001,1 表示为 0 0000001,所以 signed char 型除去符号位剩下的 7 位最大为 1111 111 = 127,再把符号加上,0 1111111 = 127,1 1111111 = -127,范围应该为 -127~127 ,同理 int 类型也一样,但是问题出来了,教科书上是 -128~127 啊,下面就剖析一下这个惊人的奇葩。


再普及一下计算机内部整数存储形式,大家都知道计算机内部是以二进制来存贮数值的,无符号整数会用全部为来存储,有符号的整数,最高位当做符号位 ,其余为表示数值


这样貌似合理, 却带来一个麻烦,当进行加法时,1+1 :

       0000 0001

+     0000 0001

—————————

       0000  0010    ……………… 2 


当相减时 1-1=?  由于计算机只会加法不会减法,它会转化为 1 + (-1) ,因此:

      0000 0001

+    1000 0001

____________________

          1000 0010     …………… -2    


1-1 = -2?  这显然是不对了,所以为了避免减法运算错误,计算机大神们发明出了反码,直接用最高位表示符号位的叫做原码, 上面提到的二进制都是原码形式,反码是原码除最高位其余位取反,规定:正数的反码和原码相同,负数的反码是原码除了符号位,其余为都取反,因此 -1 的源码为 1 0000001 ,反码为 1 1111110。


现在再用反码来计算 1+(-1) :

      0000 0001

+    1111 1110

————————

      1111 1111       ………… 再转化为原码就是 1000 0000 = -0  


虽然反码解决了相减的问题,却又带来一个问题:-0 ,既然 0000 0000 表示 0,那么就没有 -0 的必要, 出现 +0 = -0 = 0 ,一个 0 就够了,为了避免两个 0 的问题,计算机大师们又发明了补码,补码规定: 整数的补码是其本身,负数的补码为其反码加一 ,所以,负数转化为反码需两个步骤, 第一,先转化为反码,第二: 把反码加一。


这样 -1 的补码为 1111 1111 ,1+(-1) :

     0000 0001

+   1111 1111

________________

  1  0000 0000  ……………………  由于 char 为 8 位,最高位 1 被丢弃结果为 0 ,运算正确。

 

-0 :原码 1000 0000 的补码为 1 0000 0000 ,由于 char 是 八位 ,所以取低八位 00000000。   
+0 :原码 0000 0000 ,补码为也为 0000 0000 ,虽然补码 0 都是相同的,但是有两个 0 ,既然有两个 0 ,况且 0 既不是正数,也不是负数, 用原码为 0000 0000 表示就行了。


这样一来,有符号的 char,原码都用来表示 -127~127 之间的数了,唯独剩下原码 1000 0000 没有用,用排列组合也可以算出来,0 ???????,能表示 2^7 = 128 个数,刚好是 0~127。1 ???????,也能表示 128 个数,总共 signed char 有 256 个数,这与 -127~127 中间是两个 0 刚好吻合。


现在再来探讨一下关于剩下的那个 1000 0000,既然 -127 ~ 0 ~ 127 都有相应的原码与其对应,那么 1000 0000 表示什么呢,当然是 -128 了,为什么是 -128 呢,网上有人说 -0 即 1000 0000 与 128 的补码相同,所以用 1000 0000 表示 -128,,这我实在是不敢苟同,或者说 -128 没有原码,只有补码 1000 0000,胡扯,既然没有原码何来补码,还有说 -128 的原码与 -0(1000 0000) 的原码相同,所以可以用 1000 0000 表示 -128,我只能说,回答得不要那么牵强, 原码 1000 0000 与 -128 的原码实际上是不同的。


但为什么能用它表示 -128 进行运算,如果不要限制为 char 型(即不要限定是 8 位),再来看,-128 的原码:1 1000 0000 ,9位,最高位符号位,再算它的反码:1 0111 1111,进而,补码为:1 1000 0000,这是 -128 的补码,发现和原码一样,1 1000 0000 和 1000 0000 相同?如果说一样的人真是瞎了眼了,所以,-128 的原码和 -0(1000 000) 的原码是不同的,但是在 char 型中,是可以用 1000 000 表示 -128 的,关键在于char 是 8 位,它把 -128 的最高位符号位 1 丢弃了,截断后 -128 的原码为 1000 000 和 -0 的原码相同,也就是说 1000 0000  和 -128 丢弃最高位后余下的 8 位相同,所以才可以用 -0 表示 -128,这样,当初剩余的 -0(1000 0000),被拿来表示截断后的 -128,因为即使截断后的 -128 和 char 型范围的其他 (-127~127) 运算也不会影响结果, 所以才敢这么表示 -128。


比如 -128+(-1) :

     1000 0000  ------------------丢弃最高位的-128

+     1111  1111   -----------------   -1

________________

   10111  1111    ------------------char 取八位,这样结果不正确,不过没关系 ,结果-129本来就超出char型了,当然不能表示了。


比如 -128+127:

     1000 0000

  + 0111 1111

————————

     1111 1111 --------------  -1 结果正确, 所以,这就是为什么能用 1000 0000 表示-128的原因。


从而也是为什么 char 是 -128~127,而不是 -127~127 ,short int 同样如此 -32768~32767  因为在 16 位中,-32768 为原码为 17 位,丢弃最高位剩下的 16 为 - 0 的原码相同。


还有一个问题,既然 -128 最高位丢弃了。那么为什么还能打印出 -128 ?

[cpp]  view plain  copy
  1. //在内存中以补码1 1000 0000 存储,但由于是 char,所以只存储 1000 0000  
  2. char a= -128;  
  3.   
  4. //既然最高位丢弃了,输出时应该是 1000 000 的原码的十进制数-0,但为什么能输出-128呢。    
  5. printf("%d",a);   

我猜想是计算机内部的一个约定,就像 float 一样 ,能用 23 位表示 24 位的精度 ,因为最高位默认为 1,到时候把 23 位取出再加 1 便可。


-128 也是同样的原理,当数据总线从内存中取出的是 1000 000 ,CPU 会给它再添最高一位,变为 1 1000 0000 这样才能转化为 -128 输出,不然 1000 0000 如何输出?这当然是我的一种推断,具体怎么实现还得问 CPU 的设计者了。


再看一个例子:

[cpp]  view plain  copy
  1. char a=-129;  
  2. printf("%d",a); //会输入多少?? 结果为 127 ,为什么呢?   
-129 在补码为 10 0111 1111 只取后八位存储,即 0111 111 这个值刚好是 127 了,同理 -130 截断后为 126.....


如此按模轮回,关于模就先不探讨了。


那么:

[cpp]  view plain  copy
  1. unsigned  char a=  -1;  
  2. if( 1 > a){    
  3.     printf("大于");  
  4. }else{  
  5.     printf("小于");  
  6. }  

结果是什么呢?  出人意料的是:小于,而不是大于,猫腻在你哪呢,还是存储问题:

a 为 unsigned 无符号, 它的八位都用来存储数值, 没有符号位,编译器把 -1 转换为补码为 1111 1111,但由于是无符号,计算机会把 1111 11111 当做是无符号来对待,自然就是 2^8 -1  = 255 了,所以相当于是 if( 1 > 255) 肯定是 printf("小于"); 了。


本文转自:http://blog.youkuaiyun.com/daiyutage

<think>好的,用户想了解char类型的数据取值范围。首先,我需要回顾一下相关的知识。根据引用[1],char类型用于存储单个字符,取值范围是-128到+127。但用户可能想知道这个范围是怎么确定的。 接下来,我需要考虑不同的编程语言是否有差异。比如在Java中,char是16位无符号类型范围是0到65535,而C语言中的char通常是8位有符号的,但也可以是unsigned。引用[3]和[5]提到C语言char的存储方式,使用补码表示负数,所以8位有符号的范围是-128到127。而Java的引用[4]指出char是基本数据类型,但范围不同。可能用户没有明确语言,需要分别说明。 然后,要解释补码的计算。根据引用[5],符号位决定正负,剩下的7位用于数值。最大的正数是01111111,即127,最小的负数是10000000,即-128。这部分需要用数学表达式展示,比如二进制转换和补码的计算过程。 可能用户还会混淆signed和unsigned的区别。比如在C中,可以显式声明unsigned char范围是0到255。需要区分不同情况下的取值范围。 最后,结合编程实例,比如C和Java中的代码示例,帮助用户理解实际应用中的差异。同时,生成相关问题,如不同语言的区别、补码的作用等,帮助用户深入理解。</think>关于$char$类型的数据取值范围,其具体范围取决于编程语言和实现方式。以下分三个层次详细说明: ### 一、存储原理 $char$类型占用1字节(8位)存储空间,根据符号属性分为两种情况: 1. **有符号$char$(signed char)**: $$-128 \leq x \leq 127$$ 二进制补码表示范围:$10000000_2$(-128)到$01111111_2$(127)[^5] 2. **无符号$char$(unsigned char)**: $$0 \leq x \leq 255$$ 二进制范围:$00000000_2$(0)到$11111111_2$(255) ### 二、语言差异 1. **C/C++**: ```c char c = 'A'; // 默认实现定义是否为signed signed char sc = -10; // 明确声明有符号 unsigned char uc = 200; // 无符号类型 ``` 2. **Java**: ```java char ch = '中'; // Java的char是16位无符号Unicode字符 int code = ch; // 取值范围0~65535[^2][^4] ``` ### 三、溢出验证 以C语言为例演示数值溢出: ```c #include <stdio.h> int main() { signed char a = 127; a += 1; // 溢出后变为-128 printf("%d", a); // 输出-128 return 0; } ``` 当数值超过$2^7-1=127$时,会触发溢出进入负数范围[^3][^5]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值