题意:先有一个连通图,每个边都有边权,删除一个边的花费为该边的边权,问使得点1和点2失去连通所用的最小花费
需要删除哪几条边
最小割=最大流,将边权视为流量,跑出最大流,输出路径。
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<string>
#include<map>
#include<queue>
using namespace std;
const int maxm = 505;
const int INF = 1e9 + 7;
struct node
{
int u, v, flow, next;
}edge[maxm * 8];
int n, m, s, t, cnt, f, d;
int head[maxm], dis[maxm], pre[maxm], cur[maxm], vis[maxm];
void init()
{
cnt = 0, s = 1, t = 2;
memset(head, -1, sizeof(head));
memset(vis, 0, sizeof(vis));
}
void add(int u, int v, int flow)
{
edge[cnt].u = u, edge[cnt].v = v, edge[cnt].flow = flow;
edge[cnt].next = head[u], head[u] = cnt++;
}
int bfs()
{
queue<int>q;
memset(dis, -1, sizeof(dis));
dis[s] = 0;
q.push(s);
while (!q.empty())
{
int u = q.front();q.pop();
for (int i = head[u];i != -1;i = edge[i].next)
{
int v = edge[i].v;
if (dis[v] == -1 && edge[i].flow)
{
dis[v] = dis[u] + 1;
q.push(v);
}
}
}
if (dis[t] == -1) return 0;
return 1;
}
int dfs(int u, int flow)
{
if (u == t) return flow;
for (int &i = cur[u];i != -1;i = edge[i].next)
{
int v = edge[i].v;
if (dis[v] == dis[u] + 1 && edge[i].flow)
{
int d = dfs(v, min(edge[i].flow, flow));
if (d > 0)
{
edge[i].flow -= d;
edge[i ^ 1].flow += d;
return d;
}
}
}
return 0;
}
int dinic()
{
int ans = 0;
while (bfs())
{
for (int i = 0;i <= n;i++) cur[i] = head[i];
while (d = dfs(s, INF))
ans += d;
}
return ans;
}
void find(int k)
{
vis[k] = 1;
for (int i = head[k];i != -1;i = edge[i].next)
{
int v = edge[i].v;
if (vis[v] || edge[i].flow <= 0) continue;
find(v);
}
}
int main()
{
int i, j, k, u, v, w;
while (scanf("%d%d", &n, &m), n&&m)
{
init();
for (i = 1;i <= m;i++)
{
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
add(v, u, w);
}
dinic();
find(s);
for (i = 0;i < cnt;i += 2)
{
u = edge[i].u, v = edge[i].v;
if (vis[u] && !vis[v] || !vis[u] && vis[v])
printf("%d %d\n", u, v);
}
printf("\n");
}
return 0;
}
本文探讨了在连通图中找到最小割的方法,通过将边权视为流量并使用最大流算法来解决点1和点2失去连通的最小花费问题。介绍了如何通过Dinic算法实现这一过程,并给出了具体的C++代码实现。
291

被折叠的 条评论
为什么被折叠?



