文章最前: 我是Octopus,这个名字来源于我的中文名–章鱼;我热爱编程、热爱算法、热爱开源。所有源码在我的个人github ;这博客是记录我学习的点点滴滴,如果您对 Python、Java、AI、算法有兴趣,可以关注我的动态,一起学习,共同进步。
在我们的炼丹过程中,如果能够使用丰富的图像来展示模型的结构,指标的变化,参数的分布,输入的形态等信息,无疑会提升我们对问题的洞察力,并增加许多炼丹的乐趣。
TensorBoard正是这样一个神奇的炼丹可视化辅助工具。它原是TensorFlow的小弟,但它也能够很好地和Pytorch进行配合。甚至在Pytorch中使用TensorBoard比TensorFlow中使用TensorBoard还要来的更加简单和自然。
本篇结构:
一,可视化模型结构
二,可视化指标变化
三,可视化参数分布
四,可视化原始图像
五,可视化人工绘图
六,torchkeras中的TensorBoard回调函数
〇,Tensorboard可视化概述
Pytorch中利用TensorBoard可视化的大概过程如下:
首先在Pytorch中指定一个目录创建一个torch.utils.tensorboard.SummaryWriter日志写入器。
然后根据需要可视化的信息,利用日志写入器将相应信息日志写入我们指定的目录。
最后就可以传入日志目录作为参数启动TensorBoard,然后就可以在TensorBoard中愉快地看片了。
我们主要介绍Pytorch中利用TensorBoard进行如下方面信息的可视化的方法。
-
可视化模型结构: writer.add_graph
-
可视化指标变化: writer.add_scalar
-
可视化参数分布: writer.add_histogram
-
可视化原始图像: writer.add_image 或 writer.add_images
-
可视化人工绘图: writer.add_figure
这些方法尽管非常简单,但每次训练的时候都要调取调试还是非常麻烦的。
作者在torchkeras库中集成了一个torchkeras.callback.TensorBoard回调函数工具,
利用该工具配合torchkeras.LightModel可以用极少的代码在TensorBoard中实现绝大部分常用的可视化功能。
包括:
-
可视化模型结构
-
可视化指标变化
-
可视化参数分布
-
可视化超参调整
import torch
import torchkeras
print("torch.__version__="+torch.__version__)
print("torchkeras.__version__="+torchkeras.__version__)
torch.__version__=2.0.1
torchkeras.__version__=3.9.3
一,可视化模型结构
import torch
from torch import nn
from torch.utils.tensorboard import SummaryWriter
import torchkeras
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3,out_channels=32,kernel_size = 3)
self.pool = nn.MaxPool2d(kernel_size = 2,stride = 2)
self.conv2 = nn.Conv2d(in_channels=32,out_channels=64,kernel_size = 5)
self.dropout = nn.Dropout2d(p = 0.1)
self.adaptive_pool = nn.AdaptiveMaxPool2d((1,1))
self.flatten = nn.Flatten()
self.linear1 = nn.Linear(64,32)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(32,1)
def forward(self,x):
x = self.conv1(x)
x = self.pool(x)
x = self.conv2(x)
x = self.pool(x)
x = self.dropout(x)
x = self.adaptive_pool(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.relu(x)
y = self.linear2(x)
return y
net = Net()
print(net)
Net(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(dropout): Dropout2d(p=0.1, inplace=False)
(adaptive_pool): AdaptiveMaxPool2d(output_size=(1, 1))
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=64, out_features=32, bias=True)
(relu): ReLU()
(linear2): Linear(in_features=32, out_features=1, bias=True)
)
from torchkeras import summary
summary(net,input_shape= (3,32,32));
--------------------------------------------------------------------------
Layer (type) Output Shape Param #
==========================================================================
Conv2d-1 [-1, 32, 30, 30] 896
MaxPool2d-2 [-1, 32, 15, 15] 0
Conv2d-3 [-1, 64, 11, 11] 51,264
MaxPool2d-4 [-1, 64, 5, 5] 0
Dropout2d-5 [-1, 64, 5, 5] 0
AdaptiveMaxPool2d-6 [-1, 64, 1, 1] 0
Flatten-7 [-1, 64] 0
Linear-8 [-1, 32] 2,080
ReLU-9 [-1, 32] 0
Linear-10 [-1, 1] 33
==========================================================================
Total params: 54,273
Trainable params: 54,273
Non-trainable params: 0
--------------------------------------------------------------------------
Input size (MB): 0.011719
Forward/backward pass size (MB): 0.359627
Params size (MB): 0.207035
Estimated Total Size (MB): 0.578381
--------------------------------------------------------------------------
writer = SummaryWriter('./data/tensorboard')
writer.add_graph

最低0.47元/天 解锁文章
2122

被折叠的 条评论
为什么被折叠?



