Description
Given an array consists of non-negative integers, your task is to count the number of triplets chosen
from the array that can make triangles if we take them as side lengths of a triangle.
Example 1
Input: [2,2,3,4]
Output: 3
Explanation:
Valid combinations are:
2,3,4 (using the first 2)
2,3,4 (using the second 2)
2,2,3
Note
1.The length of the given array won't exceed 1000.
2.The integers in the given array are in the range of [0, 100]
Solution 1(C++)
static int x=[](){std::ios::sync_with_stdio(false); cin.tie(NULL); return 0;}();
class Solution {
public:
int triangleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
int ans=0, key, l, m, r, len=nums.size();
for(int i=0; i<nums.size(); i++){
for(int j=i+1; j<nums.size(); j++){
key = nums[i]+nums[j];
l=j+1;
r=len-1;
while(l<r){
m = l +(r+1-l>>1);
if(nums[m] < key) l=m;
else r=m-1;
}
if(nums[l]<key && l>j && l<len) ans+=(l-j);
}
}
return ans;
}
};
Solution 2(C++)
class Solution {
public:
int triangleNumber(vector<int>& nums) {
sort(nums.begin(), nums.end());
int res = 0;
for(int n = nums.size(), k = n - 1; k >= 0; --k) {
int i = 0;
int j = k - 1;
while(i < j) {
if(nums[i] + nums[j] > nums[k]) {
res += j - i;
--j;
}
else {
++i;
}
}
}
return res;
}
};
算法分析
解法一是自己写的,其实解法一与解法二主体思路都一样,只是解法一在二重循环之后查找满足两边之和大于第三边的时候,一个用的是遍历,一个用的是二分查找。
但是解法一的运行时间比解法二大,原因应该是解法一的循环有三层。但是二分查找还是很重要的: Algorithm-Binary Search算法。
不过回过头来看解法二,其实也不无道理。可以学习。
程序分析
略。
本文介绍了一种基于数组元素构成三角形的计数方法,并提供了两种C++实现方案。一种使用了二分查找来提高效率,另一种则通过遍历进行。文章详细分析了这两种算法的运行原理及效率差异。
2268

被折叠的 条评论
为什么被折叠?



