2021-01-05

#include <stdio.h>

int max( int a, int b );

int main()
{
int a, b;

scanf("%d %d", &a, &b);
printf("max = %d\n", max(a, b));

return 0;

}include <stdio.h>

void splitfloat( float x, int *intpart, float *fracpart );

int main()
{
float x, fracpart;
int intpart;

scanf("%f", &x);
splitfloat(x, &intpart, &fracpart);
printf("The integer part is %d\n", intpart);
printf("The fractional part is %g\n", fracpart);

return 0;

}include <stdio.h>

void splitfloat( float x, int *intpart, float *fracpart );

int main()
{
float x, fracpart;
int intpart;

scanf("%f", &x);
splitfloat(x, &intpart, &fracpart);
printf("The integer part is %d\n", intpart);
printf("The fractional part is %g\n", fracpart);

return 0;

}

演示了为无线无人机电池充电设计的感应电力传输(IPT)系统 Dynamic Wireless Charging for (UAV) using Inductive Coupling 模拟了为无人机(UAV)量身定制的无线电力传输(WPT)系统。该模型演示了直流电到高频交流电的转换,通过磁共振在气隙中无线传输能量,以及整流回直流电用于电池充电。 系统拓扑包括: 输入级:使用IGBT/二极管开关连接到全桥逆变器的直流电压源(12V)。 开关控制:脉冲发生器以85 kHz(周期:1/85000秒)的开关频率运行,这是SAE J2954无线充电标准的标准频率。 耦合级:使用互感和线性变压器块来模拟具有特定耦合系数的发射(Tx)和接收(Rx)线圈。 补偿:包括串联RLC分支,用于模拟谐振补偿网络(将线圈调谐到谐振频率)。 输出级:桥式整流器(基于二极管),用于将高频交流电转换回直流电,以供负载使用。 仪器:使用示波器块进行全面的电压和电流测量,用于分析输入/输出波形和效率。 模拟详细信息: 求解器:离散Tustin/向后Euler(通过powergui)。 采样时间:50e-6秒。 4.主要特点 高频逆变:模拟85 kHz下IGBT的开关瞬态。 磁耦合:模拟无人机着陆垫和机载接收器之间的松耦合行为。 Power GUI集成:用于专用电力系统离散仿真的设置。 波形分析:预配置的范围,用于查看逆变器输出电压、初级/次级电流和整流直流电压。 5.安装与使用 确保您已安装MATLAB和Simulink。 所需工具箱:必须安装Simscape Electrical(以前称为SimPowerSystems)工具箱才能运行sps_lib块。 打开文件并运行模拟。
你已经成功将 `Date` 列转换为 `datetime64[ns]` 类型,并且输出如下: ``` 0 2021-01-04 1 2021-01-05 2 2021-01-06 3 2021-01-07 4 2021-01-08 Name: Date, dtype: datetime64[ns] ``` ✅ **这说明日期解析完全正确!** 接下来你应该执行: ```python df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 确保时间顺序正确 ``` 然后进入主逻辑,使用我们之前修复过的区间筛选函数(作用于索引)即可正常运行。 --- ### ✅ 当前状态确认清单 | 检查项 | 是否完成 | 说明 | |--------|----------|------| | ✔️ `Date` 列是否为 `datetime64[ns]`? | ✅ 是 | 输出已验证 | | ✔️ 是否设置为索引? | ⚠️ 需手动执行 | 必须调用 `set_index` | | ✔️ 时间是否升序排列? | ⚠️ 建议排序 | 使用 `sort_index()` 更安全 | | ✔️ 区间过滤函数是否作用于 `index`? | ✅ 是 | 否则会出错 | --- ### ✅ 推荐后续代码(确保流程完整) ```python # 设置索引并排序 df.set_index('Date', inplace=True) df.sort_index(inplace=True) # 查看数据类型和前几行 print("Index dtype:", df.index.dtype) print("Data head:") print(df.head()) ``` 此时你的 `df.index` 是一个有序的 `DatetimeIndex`,可以安全用于以下操作: ```python intervals = { 'YTD': lambda idx: idx >= pd.Timestamp(year=idx[-1].year, month=1, day=1), '1Y': lambda idx: idx >= idx[-1] - pd.DateOffset(years=1), '6M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=6), '3M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=3), '1M': lambda idx: idx >= idx[-1] - pd.DateOffset(months=1), } ``` 因为 `idx[-1]` 就是最后一个交易日,比如 `2024-03-28`,它是一个 `pd.Timestamp`,支持 `.year`、`.month` 等属性,不会再报错! --- ### ✅ 示例:查看当前 YTD 起始日 你可以加一段调试代码来验证逻辑是否正确: ```python # 调试:打印各个区间的起始时间(以最后一个日期为基准) last_date = df.index[-1] print(f"最新交易日: {last_date}") print("各区间起始日:") print("YTD:", pd.Timestamp(year=last_date.year, month=1, day=1)) print("1Y: ", last_date - pd.DateOffset(years=1)) print("6M: ", last_date - pd.DateOffset(months=6)) print("3M: ", last_date - pd.DateOffset(months=3)) print("1M: ", last_date - pd.DateOffset(months=1)) ``` 输出示例: ``` 最新交易日: 2024-03-28 各区间起始日: YTD: 2024-01-01 1Y: 2023-03-28 6M: 2023-09-28 3M: 2024-01-28 1M: 2024-02-28 ``` 这些日期就是每个区间的“开始日”,之后用它们做布尔索引就能提取对应时间段的数据。 --- ### ✅ 总结:你现在可以继续了! 只要你完成了以下几步: 1. ✅ 成功将 `Date` 转为 `datetime64[ns]` 2. ✅ 执行了 `df.set_index('Date')` 和 `sort_index()` 3. ✅ 使用基于 `idx`(即 DatetimeIndex)的过滤函数 那么之前的两个错误(`float64 has no attribute year` 和 `>= not supported`)都已彻底解决,现在可以放心运行完整的绩效分析代码。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值