Harris角点算子

本文详细介绍了Harris角点检测算法,包括其基础知识、算法原理和数学模型。Harris算子通过计算图像的灰度变化来检测角点,具有旋转不变性,但不具有尺度不变性。阈值选择影响检测点数量,且该算法对亮度和对比度变化不敏感。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、基础知识

二、Harris角点原理

1、算法原理

2、数学模型

三、Harris角点的性质

1、阈值决定检测点数量

2、Harris角点检测算子对亮度和对比度的变化不敏感

3. Harris角点检测算子具有旋转不变性

4. Harris角点检测算子不具有尺度不变性


特征点检测广泛应用到目标匹配、目标跟踪、三维重建等应用中,在进行目标建模时会对图像进行目标特征的提取,常用的有颜色、角点、特征点、轮廓、纹理等特征。现在开始讲解常用的特征点检测,其中Harris角点检测是特征点检测的基础,提出了应用邻近像素点灰度差值概念,从而进行判断是否为角点、边缘、平滑区域。Harris角点检测原理是利用移动的窗口在图像中计算灰度变化值,其中关键流程包括转化为灰度图像、计算差分图像、高斯平滑、计算局部极值、确认角点。


一、基础知识


图像的变化类型:

在特征点检测中经常提出尺度不变、旋转不变、抗噪声影响等,这些是判断特征点是否稳定的指标。

性能较好的角点:

  1. 检测出图像中“真实”的角点
  2. 准确的定位性能
  3. 很高的重复检测率
  4. 噪声的鲁棒性
  5. 较高的计算效率

角点的类型:

基于图像灰度的方法通过计算点的曲率及梯度来检测角点,避免了第一类方法存在的缺陷,此类方法主要有Moravec算子、Forstner算子、Harris算子、SUSAN算子等。

image


二、Harris角点原理


1、算法原理

角点原理来源于人对角点的感性判断,即图像在各个方向灰度有明显变化。算法的核心是利用局部窗口在图像上进行移动判断灰度发生较大的变化,所以此窗口用于计算图像的灰度变化为:[-1,0,1;-1,0,1;-1,0,1][-1,-1,-1;0,0,0;1,1,1]。人各个方向上移动这个特征的小窗口,如图3中窗口内区域的灰度发生了较大的变化,那么就认为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值