Python必备基础:这些NumPy的神操作你都掌握了吗?

导读:NumPy是Python的基础,更是数据科学的通用语言。

本文简单介绍NumPy模块的两个基本对象ndarray、ufunc,介绍ndarray对象的几种生成方法及如何存取其元素、如何操作矩阵或多维数组、如何进行数据合并与展平等。最后说明通用函数及广播机制。

作者:吴茂贵,王冬,李涛,杨本法

如需转载请联系大数据(ID:hzdashuju)

 

Python必备基础:这些NumPy的神操作你都掌握了吗?

 

NumPy为何如此重要?实际上Python本身含有列表(list)和数组(array),但对于大数据来说,这些结构有很多不足。因列表的元素可以是任何对象,因此列表中所保存的是对象的指针。这样为了保存一个简单的[1,2,3],都需要有3个指针和3个整数对象。

对于数值运算来说,这种结构显然比较浪费内存和CPU计算时间。至于array对象,它直接保存数值,和C语言的一维数组比较类似。但是由于它不支持多维,也没有各种运算函数,因此也不适合做数值运算。

NumPy(Numerical Python 的简称)的诞生弥补了这些不足,它提供了两种基本的对象:ndarray(N-dimensional array object)和 ufunc(universal function object)。ndarray是存储单一数据类型的多维数组,而ufunc则是能够对数组进行处理的函数。

NumPy的主要特点:

  • ndarray,快速,节省空间的多维数组,提供数组化的算术运算和高级的广播功能。
  • 使用标准数学函数对整个数组的数据进行快速运算,而不需要编写循环。
  • 读取/写入磁盘上的阵列数据和操作存储器映像文件的工具。
  • 线性代数,随机数生成,以及傅里叶变换的能力。
  • 集成C、C++、Fortran代码的工具。

在使用 NumPy 之前,需要先导入该模块:

import numpy as np

01 生成ndarray的几种方式

NumPy封装了一个新的数据类型ndarray,一个多维数组对象,该对象封装了许多常用的数学运算函数,方便我们进行数据处理以及数据分析,那么如何生成ndarray呢?这里我们介绍生成ndarray的几种方式,如从已有数据中创建;利用random创建;创建特殊多维数组;使用arange函数等。

1. 从已有数据中创建

直接对python的基础数据类型(如列表、元组等)进行转换来生成ndarray。

(1)将列表转换成ndarray

import numpy as np
list1 = [3.14,2.17,0,1,2]
nd1 = np.array(list1)
print(nd1)
print(type(nd1))

打印结果:

[ 3.14 2.17 0. 1. 2. ]
<class 'numpy.ndarray'>

(2)嵌套列表可以转换成多维ndarray

import numpy as np
list2 = [[3.14,2.17,0,1,2],[1,2,3,4,5]]
nd2 = np.array(list2)
print(nd2)
print(type(nd2))

打印结果:

[[ 3.14 2.17 0. 1. 2. ]
 [ 1. 2. 3. 4. 5. ]]
<class 'numpy.ndarray'>

如果把(1)和(2)中的列表换成元组也同样适合。

2. 利用random模块生成ndarray

在深度学习中,我们经常需要对一些变量进行初始化,适当的初始化能提高模型的性能。通常我们用随机数生成模块random来生成,当然random模块又分为多种函数:

  • random生成0到1之间的随机数;
  • uniform生成均匀分布随机数;
  • randn生成标准正态的随机数;
  • normal生成正态分布;
  • shuffle随机打乱
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值