Function Run Fun
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 18326 | Accepted: 9365 |
Description
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
Source
题目大意:根据题目给的递归函数w(a,b,c),实现它,使时间变短。
解题思路:看到a、b、c中任意一个大于20,那么输出w(20,20,20),所以上界最多是20;再看每个状态方程都依赖于前一个状态,那么三重for循环打表即可。
代码如下:
#include <cstdio>
int dp[21][21][21];
void dabiao()
{
for(int i=0;i<21;i++)//打到20是因为一旦有一个超过20了,那么都是输出的dp[20][20][20]
{
for(int j=0;j<21;j++)
{
for(int k=0;k<21;k++)
{
if(i==0||j==0||k==0)//含0的都得是1 ,且下面的俩转移方程依赖于前一个i-1,j-1,k-1,所以一定要把这些情况写上去
{
dp[i][j][k]=1;
}
else
{
if(i<j&&j<k)//依赖于题目的方程
{
dp[i][j][k]=dp[i][j][k-1]+dp[i][j-1][k-1]-dp[i][j-1][k];
}
else////依赖于题目的方程
{
dp[i][j][k]=dp[i-1][j][k]+dp[i-1][j-1][k]+dp[i-1][j][k-1]-dp[i-1][j-1][k-1];
}
}
}
}
}
}
int main()
{
dabiao();
int a,b,c;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
if(a==-1&&b==-1&&c==-1)//结束标志
break;
if(a<=0||b<=0||c<=0)//一旦有一个小于0那么输出1
{
printf("w(%d, %d, %d) = 1\n",a,b,c);
}
else
{
if(a>20||b>20||c>20)//一旦有一个超过20了,那么都是输出的dp[20][20][20]
{
printf("w(%d, %d, %d) = %d\n",a,b,c,dp[20][20][20]);
}
else//输出那个数字
{
printf("w(%d, %d, %d) = %d\n",a,b,c,dp[a][b][c]);
}
}
}
return 0;
}