luogu P2624 [HNOI2008]明明的烦恼

本文解析了洛谷P2624题目,该题要求根据给定的点度数计算无根树的可能方案数量。通过应用prufer序列性质,详细介绍了如何计算所有可能的排列组合,并给出了最终的公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目传送门:https://www.luogu.org/problemnew/show/P2624



题意:

给出n个点的度数,求其无根树的可能的方案数。

无解时答案为-1。

注意:对于度相同的点,改变它们的编号也是一种方案。



思路:

其实就是prufer序列性质4的升级版(加了一个注意的条件)。

详见我的blog:prufer序列

以下参考(就是摘自):http://www.cnblogs.com/zhj5chengfeng/archive/2013/08/23/3278557.html


假设度数有限制的点的数量为cnt。

令:

则在prufer序列中的不同的排列的总数为:

而剩下的n-2-sum个位置,可以随意的排列剩余的n-cnt个点,于是,总的方案数就应该是:

化简之后为:


代码:

懒得不想打高精。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值