Pytorch(笔记6)

线性回归

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。
在机器学习领域中的大多数任务通常都与预测(prediction)有关。当我们想预测一个数值时,就会涉及到回归问题。常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、预测需求(零售销量等)。但不是所有的预测都是回归问题。

生成数据集

我们将根据带有噪声的线性模型构造一个人造数据集。我们的任务是使用这个有限样本的数
据集来恢复这个模型的参数。我们将使用低维数据,这样可以很容易地将其可视化。在下面的代码中,我们生成一个包含1000个样本的数据集,每个样本包含从标准正态分布中采样的2个特征。
我们使用线性模型参数w = [2, −3.4]⊤、b = 4.2 和噪声项ϵ生成数据集及其标签:

y = Xw + b + ϵ.

ϵ可以视为模型预测和标签时的潜在观测误差。在这里我们认为标准假设成立,即ϵ服从均值为0的正态分布。为了简化问题,我们将标准差设为0.01。下面的代码生成合成数据集。

import torch  # 导入PyTorch库,用于张量计算和深度学习模型
from d2l import torch as d2l  # 从d2l库中导入torch模块,并重命名为d2l,通常用于提供简化的深度学习工具函数

# 定义一个函数用于生成合成数据
def synthetic_data(w, b, num_examples
### PyTorch 学习笔记与技术总结 PyTorch 是一个功能强大的开源机器学习框架,广泛应用于深度学习领域。以下是关于 PyTorch 的一些核心知识点和技术总结: #### 1. 环境配置 在开始使用 PyTorch 前,需完成必要的环境配置工作。这通常包括安装 Python、设置 GPU 支持以及导入所需的依赖项[^2]。 #### 2. 数据加载与处理 PyTorch 提供了灵活的数据加载方式,主要包括 `torch.utils.data.Dataset` 和 `torch.utils.data.DataLoader` 这两个库函数。通过这些工具可以高效地管理数据的组织形式和批量加载过程[^2]。 #### 3. 可视化工具 为了更好地监控模型训练的过程,PyTorch 集成了 TensorBoard 工具。该工具能够实时绘制损失曲线、显示权重分布以及其他重要指标,从而帮助开发者调整超参数并优化性能[^2]。 #### 4. 构建神经网络 构建神经网络是 PyTorch 中的核心部分之一。以下是一些常用的模块及其作用: - **基本骨架**: 使用 `nn.Module` 类定义自定义网络结构。 - **卷积操作**: 利用 `torch.nn.functional` 实现动态卷积计算。 - **卷积层**: 调用 `torch.nn.Conv2d` 创建二维卷积层。 - **池化层**: 应用 `torch.nn.MaxPool2d` 执行最大池化操作。 - **填充层**: 设置边界扩展策略以控制特征图大小变化。 - **非线性激活函数**: 如 ReLU (`torch.nn.ReLU`) 或 Sigmoid (`torch.nn.Sigmoid`)。 - **全连接层**: 即线性变换层,可通过 `torch.nn.Linear` 来实现。 - **序列容器**: 将多个层按顺序组合起来形成完整的网络架构,推荐使用 `torch.nn.Sequential`。 #### 5. 设备分配原则 对于大规模计算任务而言,合理安排 CPU 和 GPU 上的任务至关重要。一般情况下会将数据读取及预处理阶段留在 CPU 上执行;而涉及大量矩阵乘法等密集型运算则交由 GPU 处理,以此达到最大化硬件效能的目的[^3]。 #### 6. 模型评估与保存 经过充分训练后的模型可以通过测试集来验证其泛化能力,并最终导出为可部署的形式以便实际应用中调用。常用方法有 `.eval()` 方法切换至推理模式以及 `torch.save(model.state_dict(), PATH)` 函数持久化模型状态字典[^2]。 ```python import torch from torch import nn class SimpleNet(nn.Module): def __init__(self): super(SimpleNet, self).__init__() self.fc = nn.Linear(10, 1) def forward(self, x): return torch.sigmoid(self.fc(x)) model = SimpleNet() print(model) ``` 以上代码片段展示了一个简单的前馈神经网络实例,其中包含了输入维度为 10 输出维度为 1 的单隐藏层感知机模型定义[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值