zoj 2112 静态主席树,树套树 去见可修改第k大

本文介绍了一种处理大规模数据集的高效算法,能够在数万条记录中快速找到指定范围内的第k大元素,并支持实时更新数值。通过使用静态主席树和树套树的数据结构,实现了对区间查询和修改操作的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Company Dynamic Rankings has developed a new kind of computer that is no longer satisfied with the query like to simply find the k-th smallest number of the given N numbers. They have developed a more powerful system such that for N numbers a[1], a[2], …, a[N], you can ask it like: what is the k-th smallest number of a[i], a[i+1], …, a[j]? (For some i<=j, 0 < k<=j+1-i that you have given to it). More powerful, you can even change the value of some a[i], and continue to query, all the same.

Your task is to write a program for this computer, which

  • Reads N numbers from the input (1 <= N <= 50,000)

  • Processes M instructions of the input (1 <= M <= 10,000). These instructions include querying the k-th smallest number of a[i], a[i+1], …, a[j] and change some a[i] to t.

Input

The first line of the input is a single number X (0 < X <= 4), the number of the test cases of the input. Then X blocks each represent a single test case.

The first line of each block contains two integers N and M, representing N numbers and M instruction. It is followed by N lines. The (i+1)-th line represents the number a[i]. Then M lines that is in the following format

Q i j k or
C i t

It represents to query the k-th number of a[i], a[i+1], …, a[j] and change some a[i] to t, respectively. It is guaranteed that at any time of the operation. Any number a[i] is a non-negative integer that is less than 1,000,000,000.

There’re NO breakline between two continuous test cases.

Output

For each querying operation, output one integer to represent the result. (i.e. the k-th smallest number of a[i], a[i+1],…, a[j])

There’re NO breakline between two continuous test cases.

Sample Input

2
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3
5 3
3 2 1 4 7
Q 1 4 3
C 2 6
Q 2 5 3

Sample Output

3
6
3
6
题意:可修改区间第k大。
做法:静态主席树处理原数组,用树套树维护修改的贡献。
用二分查找边界的时候可以优化查询主席树的log。

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+7;
int num[N];
int op[N],a[N],b[N],c[N];
vector<int> vp;
int geth(int x){
    return lower_bound(vp.begin(),vp.end(),x) - vp.begin()+1;
}

struct Tree{
    int root[N],T[N],ls[N*24],rs[N*24],su[N*24];
    int top,mx,mn;
    void init(int n,int x){
        memset(T,0,sizeof(T));
        top = 1;
        mx = x,mn = n;
        root[0] = 0;
        for(int i = 1;i <= n; i++){
            //update(root[i],root[i-1],mp[num[i]],1,mx);
            update(root[i],root[i-1],geth(num[i]),1,mx);
        }
    }
    int newnode(){
        ls[top] = rs[top] = su[top] = 0;
        return top ++;
    }
    void update(int &rt,int prt,int x,int l,int r){
        rt = newnode();
        if(l == r){
            su[rt] = su[prt]+1;
            //cout << "!!!" << l << ' '<< su[rt] << endl;
            return ;
        }
        int mid = l+r>>1;
        if(mid >= x) update(ls[rt],ls[prt],x,l,mid),rs[rt] = rs[prt];
        else update(rs[rt],rs[prt],x,mid+1,r),ls[rt] = ls[prt];
        su[rt] = su[ls[rt]]+su[rs[rt]];
    }
    void set(int pos,int x,int y){
        while(pos <= mx){
            define(T[pos],x,-1,1,mx);
            define(T[pos],y,1,1,mx);
            pos += lowbit(pos);
        }
    }
    void define(int &rt,int x,int d,int l,int r){
        if(rt == 0) rt = newnode();
        if(l == r){
            su[rt] += d;
            return ;
        }
        int mid = l+r>>1;
        if(mid >= x) define(ls[rt],x,d,l,mid);
        else define(rs[rt],x,d,mid+1,r);
        su[rt] = su[ls[rt]]+su[rs[rt]];
    }

    int get(int rt,int L,int R,int l,int r){
        if(rt == 0) return 0;
        if(L <= l && R>= r) return su[rt];
        int mid = l+r>>1;
        int ret = 0;
        if(mid >= L) ret += get(ls[rt],L,R,l,mid);
        if(mid < R) ret += get(rs[rt],L,R,mid+1,r);
        return ret;
    }

    int check(int x,int y){
        int ret = 0;
        while(x){
            ret += get(T[x],1,y,1,mx);
            x -= lowbit(x);
        }
        return ret;
    }
    int query(int L,int R,int k){
        int l = 1,r = mx;
        int lrt = root[L-1],rrt = root[R];
        while(r != l){
            int mid = l+r>>1;
            int la = su[ls[lrt]] + check(L-1,mid);
            int lb = su[ls[rrt]] + check(R,mid);
            //cout <<la << ' '<<lb << endl;
            //cout << l << ' '<< r << ' '<< lrt << ' '<< rrt << ' ' << su[ls[lrt]] << ' '<<su[ls[rrt]] << endl;
            if(lb - la >= k) {r = mid,lrt = ls[lrt],rrt = ls[rrt];}
            else {k -= su[ls[rrt]]-su[ls[lrt]]; l = mid+1,lrt = rs[lrt],rrt = rs[rrt];}
        }
        return r;
    }
    int lowbit(int x) {return x&-x;}
}tree;


int main(){
    int T;
    cin >> T;
    while(T--){
        int n,m;
        scanf("%d %d",&n,&m);
        vp.clear();
        for(int i = 1;i <= n;i ++) scanf("%d",&num[i]);
        for(int i= 1;i <= m;i ++){
            char st[10];
            scanf("%s",st);
            if(st[0] == 'C'){
                op[i] = 1;
                scanf("%d %d",&a[i],&b[i]);
                vp.push_back(b[i]);
            }
            else {
                op[i] = 2;
                scanf("%d %d %d",&a[i],&b[i],&c[i]);
            }
        }
        for(int i= 1;i <= n;i ++) vp.push_back(num[i]);
        sort(vp.begin(),vp.end());
        vp.resize(unique(vp.begin(),vp.end())-vp.begin());

        tree.init(n,vp.size());

        for(int i = 1;i <= m;i ++){
            //cout <<"!!!"<< i << ' '<<op[i] << endl;
            if(op[i] == 2){
                printf("%d\n",vp[tree.query(a[i],b[i],c[i])-1]);
            }
            else{
                //tree.set(a[i],mp[num[a[i]]],mp[b[i]]);
                tree.set(a[i],geth(num[a[i]]),geth(b[i]));
                num[a[i]] = b[i];
            }
        }
    }
    return 0;
}
### ZOJ 1088 线段 解题思路 #### 题目概述 ZOJ 1088 是一道涉及动态维护区间的经典问题。通常情况下,这类问题可以通过线段来高效解决。题目可能涉及到对数组的区间修改以及单点查询或者区间查询。 --- #### 线段的核心概念 线段是一种基于分治思想的数据结构,能够快速处理区间上的各种操作,比如求和、最值/最小值等。其基本原理如下: - **构建阶段**:通过递归方式将原数组划分为多个小区间,并存储在二叉形式的节点中。 - **更新阶段**:当某一段区间被修改时,仅需沿着对应路径向下更新部分节点即可完成全局调整。 - **查询阶段**:利用懒惰标记(Lazy Propagation),可以在 $O(\log n)$ 时间复杂度内完成任意范围内的计算。 具体到本题,假设我们需要支持以下两种主要功能: 1. 对指定区间 `[L, R]` 执行某种操作(如增加固定数值 `val`); 2. 查询某一位置或特定区间的属性(如总和或其他统计量)。 以下是针对此场景设计的一种通用实现方案: --- #### 实现代码 (Python) ```python class SegmentTree: def __init__(self, size): self.size = size self.tree_sum = [0] * (4 * size) # 存储区间和 self.lazy_add = [0] * (4 * size) # 延迟更新标志 def push_up(self, node): """ 更新父节点 """ self.tree_sum[node] = self.tree_sum[2*node+1] + self.tree_sum[2*node+2] def build_tree(self, node, start, end, array): """ 构建线段 """ if start == end: # 到达叶节点 self.tree_sum[node] = array[start] return mid = (start + end) // 2 self.build_tree(2*node+1, start, mid, array) self.build_tree(2*node+2, mid+1, end, array) self.push_up(node) def update_range(self, node, start, end, l, r, val): """ 区间更新 [l,r], 加上 val """ if l <= start and end <= r: # 当前区间完全覆盖目标区间 self.tree_sum[node] += (end - start + 1) * val self.lazy_add[node] += val return mid = (start + end) // 2 if self.lazy_add[node]: # 下传延迟标记 self.lazy_add[2*node+1] += self.lazy_add[node] self.lazy_add[2*node+2] += self.lazy_add[node] self.tree_sum[2*node+1] += (mid - start + 1) * self.lazy_add[node] self.tree_sum[2*node+2] += (end - mid) * self.lazy_add[node] self.lazy_add[node] = 0 if l <= mid: self.update_range(2*node+1, start, mid, l, r, val) if r > mid: self.update_range(2*node+2, mid+1, end, l, r, val) self.push_up(node) def query_sum(self, node, start, end, l, r): """ 查询区间[l,r]的和 """ if l <= start and end <= r: # 完全匹配 return self.tree_sum[node] mid = (start + end) // 2 res = 0 if self.lazy_add[node]: self.lazy_add[2*node+1] += self.lazy_add[node] self.lazy_add[2*node+2] += self.lazy_add[node] self.tree_sum[2*node+1] += (mid - start + 1) * self.lazy_add[node] self.tree_sum[2*node+2] += (end - mid) * self.lazy_add[node] self.lazy_add[node] = 0 if l <= mid: res += self.query_sum(2*node+1, start, mid, l, r) if r > mid: res += self.query_sum(2*node+2, mid+1, end, l, r) return res def solve(): import sys input = sys.stdin.read data = input().split() N, Q = int(data[0]), int(data[1]) # 数组小 和 操作数量 A = list(map(int, data[2:N+2])) # 初始化数组 st = SegmentTree(N) st.build_tree(0, 0, N-1, A) idx = N + 2 results = [] for _ in range(Q): op_type = data[idx]; idx += 1 L, R = map(int, data[idx:idx+2]); idx += 2 if op_type == 'Q': # 查询[L,R]的和 result = st.query_sum(0, 0, N-1, L-1, R-1) results.append(result) elif op_type == 'U': # 修改[L,R]+X X = int(data[idx]); idx += 1 st.update_range(0, 0, N-1, L-1, R-1, X) print("\n".join(map(str, results))) solve() ``` --- #### 关键点解析 1. **初始化与构建**:在线段创建过程中,需要遍历输入数据并将其映射至对应的叶子节点[^1]。 2. **延迟传播机制**:为了优化性能,在执行批量更新时不立即作用于所有受影响区域,而是记录更改意图并通过后续访问逐步生效[^2]。 3. **时间复杂度分析**:由于每层最多只访问两个子分支,因此无论是更新还是查询都维持在 $O(\log n)$ 范围内[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值