下面是一颗二叉树的建立,以及其遍历算法,深度,数目等问题的求解
#pragma once
#include<iostream>
#include<queue>
using namespace std;
template<class Type>
class Tree;
//树节点
template<class Type>
class TreeNode
{
friend class Tree<Type>; //友元类
public:
TreeNode()
:data(Type())
, firstchild(NULL)
, nextsibling(NULL)
{}
TreeNode(Type d, TreeNode* L = NULL, TreeNode* C = NULL)
:data(d)
,firstchild(C)
,nextsibling(L)
{}
~TreeNode()
{}
private:
Type data;
TreeNode<Type> *firstchild;
TreeNode<Type> *nextsibling;
};
template<class Type>
class Tree
{
public:
Tree(Type Ref)
:Refvalue(Ref)
, root(NULL)
{}
public:
void create()
{ // 创建二叉树
create(root);
}
void PreOrder()
{ // 先序遍历二叉树
cout << "PreOder:";
PreOrder(root);
cout << endl;
}
void InOrder()
{// 中序遍历二叉树
cout << "InOrder:";
InOrder(root);
cout << endl;
}
void PostOrder()
{ // 后续遍历二叉树
cout << "PostOder:";
PostOrder(root);
cout << endl;
}
void LevelOrder()
{ // 层序遍历二叉树
cout << "LevelOder:";
LevelOrder(root);
cout << endl;
}
void TreeNodeNum()
{ //树节点数目
cout << "TreeNode:";
cout << TreeNodeNum(root) << endl;
}
void DeepTree()
{ // 二叉树的深度
cout << "TreeDeep:";
cout << DeepTree(root) << endl;
}
protected:
//内部函数
void create(TreeNode<Type>*& t)
{
Type item;
cin >> item;
if (item == Refvalue)
{
t = NULL;
return;
}
else
{
t = new TreeNode<Type>(item);
create(t->firstchild);
create(t->nextsibling);
}
}
bool empty()
{
return root == NULL;
}
void PreOrder(TreeNode<Type>*& t)
{
if (t == NULL)
{
return;
}
else
{
cout << t->data << " ";
PreOrder(t->firstchild);
PreOrder(t->nextsibling);
}
}
void InOrder(TreeNode<Type>*& t)
{
if (t == NULL)
{
return;
}
else
{
InOrder(t->firstchild);
cout << t->data << " ";
InOrder(t->nextsibling);
}
}
void PostOrder(TreeNode<Type>*& t)
{
if (t == NULL)
{
return;
}
else
{
TreeNode<Type>*q = NULL;
for (q = t->firstchild; q != NULL; q = q->nextsibling)
{
PostOrder(q);
}
cout << t->data << " ";
}
}
void LevelOrder(TreeNode<Type>* t)
{
if (t != NULL)
{
queue<TreeNode<Type>* > Q;
Q.push(t);
while (!Q.empty())
{
t = Q.front();
Q.pop();
cout << t->data << " ";
for (t = t->firstchild; t != NULL; t = t->nextsibling)
{
Q.push(t);
}
}
}
}
int TreeNodeNum(TreeNode<Type>* t)const
{ //先根
if (t == NULL)
{
return 0;
}
int count = 1;
count += TreeNodeNum(t->firstchild);
count += TreeNodeNum(t->nextsibling);
return count;
}
int DeepTree(TreeNode<Type>* t)const
{ //后根
if (t == NULL)
{
return 0;
}
int f_deep = DeepTree(t->firstchild) + 1;
int n_deep = DeepTree(t->nextsibling);
return (f_deep > n_deep ? f_deep : n_deep);
}
private:
Type Refvalue;
TreeNode<Type> *root;
};
void Test()
{//测试
Tree<char> mytree('#');
mytree.create(); //创建,先根
mytree.PreOrder(); //先根遍历
mytree.InOrder(); //中序遍历
mytree.PostOrder(); //后根遍历
mytree.LevelOrder(); //层序遍历
mytree.TreeNodeNum(); //树的节点数
mytree.DeepTree(); //树的深度
}
上面是就是一颗二叉树的建立的代码,我使用模板实现的,只实现了简单的功能,二叉树中最常见的思想就是递归,多写一些二叉树中的代码真的可以提高你对递归算法的熟悉度。