Codeforces Beta Round #19 D线段树

本文深入探讨了程序开发领域的关键技术和算法优化策略,通过实例展示了如何运用现代编程工具和方法论,有效解决高负载下复杂的计算任务。从数据结构选择到算法设计,再到实际应用案例分析,本篇提供了全面且实用的技术指南。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Points

time limit per test2 seconds
memory limit per test256 megabytes

Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coordinate system on it as follows: point (0, 0) is located in the bottom-left corner, Ox axis is directed right, Oy axis is directed up. Pete gives Bob requests of three types:

add x y — on the sheet of paper Bob marks a point with coordinates (x, y). For each request of this type it’s guaranteed that point (x, y) is not yet marked on Bob’s sheet at the time of the request.
remove x y — on the sheet of paper Bob erases the previously marked point with coordinates (x, y). For each request of this type it’s guaranteed that point (x, y) is already marked on Bob’s sheet at the time of the request.
find x y — on the sheet of paper Bob finds all the marked points, lying strictly above and strictly to the right of point (x, y). Among these points Bob chooses the leftmost one, if it is not unique, he chooses the bottommost one, and gives its coordinates to Pete.
Bob managed to answer the requests, when they were 10, 100 or 1000, but when their amount grew up to 2·105, Bob failed to cope. Now he needs a program that will answer all Pete’s requests. Help Bob, please!

Input
The first input line contains number n (1 ≤ n ≤ 2·105) — amount of requests. Then there follow n lines — descriptions of the requests. add x y describes the request to add a point, remove x y — the request to erase a point, find x y — the request to find the bottom-left point. All the coordinates in the input file are non-negative and don’t exceed 109.

Output
For each request of type find x y output in a separate line the answer to it — coordinates of the bottommost among the leftmost marked points, lying strictly above and to the right of point (x, y). If there are no points strictly above and to the right of point (x, y), output -1.

Sample test(s)
input
7
add 1 1
add 3 4
find 0 0
remove 1 1
find 0 0
add 1 1
find 0 0
output
1 1
3 4
1 1
input
13
add 5 5
add 5 6
add 5 7
add 6 5
add 6 6
add 6 7
add 7 5
add 7 6
add 7 7
find 6 6
remove 7 7
find 6 6
find 4 4
output
7 7
-1
5 5

#include <iostream>
#include <cstdio>
#include <set>
#include <cstring>
#include <algorithm>
#include <cassert>
using namespace std ;

typedef pair<int , int > PII ;
const int N = 2e5 + 11 ;

int num[N] ; int cnt ;
int oper[N][3] ;
int n ;

int at(int x) {
    return lower_bound(num , num+cnt , x)-num+1 ;
}

struct Segment {
    set<int> sset[N] ;
    int fmax[N<<2] ;
    int x1 , y1 ;
    int ansx , ansy ;
    int n ;

    void init(int x) {
        n = x ;
        build(1 , 1 , n) ;
    }

    void up(int u) {
        fmax[u] = max(fmax[u<<1] , fmax[u<<1|1]) ;
    }

    void build(int u , int l , int r) {
        if(l == r) {
            fmax[u] = -1 ;
            sset[r].clear() ;
            return ;
        }
        int mid = (l+r)>>1 ;
        build(u<<1 , l , mid) ;
        build(u<<1|1 , mid+1 , r) ;
        up(u) ;
    }

    PII find(int a , int b) {
        ansx = -1 , ansy = -1 ;
        a = at(a+1) ; ++b ;
        x1 = a , y1 = n ;
        _find(1 , 1 , n , b) ;
        return make_pair(ansx , ansy) ;
    }

    void query(int u ,int l ,int r, int d) {
        if(l == r) {
            ansx = num[r-1] ;
            ansy = *sset[r].lower_bound(d) ;
            return ;
        }
        int mid = (l+r)>>1 ;
        if(fmax[u<<1] >= d) query(u<<1 , l , mid , d) ;
        else query(u<<1|1 , mid+1 , r , d) ;
    }

    void _find(int u , int l , int r , int d) {
        if(x1 <= l && r <= y1) {
            if(fmax[u] >= d) {
                query(u ,l , r , d) ;
            }
            return ;
        }
        int mid = (l+r)>>1 ;
        if(x1 <= mid && fmax[u] >= d) _find(u<<1 , l , mid , d) ;
        if(ansx == -1 && y1 > mid && fmax[u<<1|1] >= d) _find(u<<1|1 , mid+1 , r , d) ;
    }

    void add(int a , int b) {
        x1 = y1 = at(a) ;
        _add(1 , 1 , n , b) ;
    }

    void _add(int u , int l , int r , int b) {
        if(x1 <= l && r <= y1) {
            sset[r].insert(b) ;
            fmax[u] = *sset[r].rbegin() ;
            return ;
        }
        int mid = (l+r)>>1 ;
        if(x1 <= mid) _add(u<<1 , l , mid , b ) ;
        if(y1 > mid) _add(u<<1|1 , mid+1 , r , b) ;
        up(u) ;
    }

    void del(int a , int b) {
        x1 = y1 = at(a) ;
        _del(1 , 1 , n , b) ;
    }

    void _del(int u , int l ,int r , int b) {
        if(x1 <= l && r <= y1) {
            sset[r].erase(b) ;
            if(sset[r].size() == 0) fmax[u] = -1 ;
            else fmax[u] = *(sset[r].rbegin()) ;
            return ;
        }
        int mid = (l+r)>>1 ;
        if(x1 <= mid) _del(u<<1 , l , mid , b) ;
        if(y1 > mid) _del(u<<1|1 , mid+1 , r , b) ;
        up(u) ;
    }
};

Segment seg ;

void init() {
    char str[10] ;
    for(int i = 0 ; i < n ; ++i) {
        scanf("%s%d%d" , str , &oper[i][1] , &oper[i][2]) ;
        if(str[0] == 'a') oper[i][0] = 0 ;
        else if(str[0] == 'r') oper[i][0] = 1 ;
        else if(str[0] == 'f') oper[i][0] = 2 ;
        num[i] = oper[i][1] ;
    }
    sort(num , num+n) ;
    cnt = unique(num  , num+n)-num ;
}

void work() {
    seg.init(cnt) ;
    for(int i = 0 ; i < n ; ++i) {
        if(oper[i][0] == 0) {
            seg.add(oper[i][1] , oper[i][2]) ;
        }else if(oper[i][0] == 1) {
            seg.del(oper[i][1] , oper[i][2]) ;
        }else if(oper[i][0] == 2) {
            PII ans = seg.find(oper[i][1] , oper[i][2]) ;
            if(ans.first != -1) printf("%d %d\n" , ans.first  , ans.second) ;
            else printf("-1\n") ;
        }
    }
}

int  main() {
    //freopen("data.in" , "r" , stdin) ;
    while(scanf("%d" ,&n)==1) {
        init() ;
        work() ;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值