HDU 2888 二维RMQ 模板

本文介绍了一种使用预处理的方法来高效解决二维矩阵上的区间最大值查询问题。通过事先计算不同大小的子矩阵的最大值,可以快速响应对于任意矩形区域内的最大值查询需求,并判断最值是否位于边界上。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <cmath>
using namespace std ;

const int N = 300 + 11 ;

int dp[N][N][9][9] ;
int n , m ;

void init() {
	for(int i = 1 ; i <= n ; ++i) {
		for(int j = 1 ; j <= m ;++j) {
			scanf("%d" ,&dp[i][j][0][0]) ;
		}
	}
	int m1 , m2 , m3 , m4 ;
	for(int r = 0 ; (1<<r) <= n ; ++r) {
		for(int c = 0 ; (1<<c) <= m ; ++c) {
			if(r == 0 && c == 0) continue ;
			for(int i = 1 ; i+(1<<r)-1 <= n ; ++i) {
				for(int j = 1 ; j+(1<<c)-1 <= m ; ++j) {
					if(r) {
						dp[i][j][r][c] = max(dp[i][j][r-1][c] , dp[i+(1<<(r-1))][j][r-1][c]) ;
					}else {
						dp[i][j][r][c] = max(dp[i][j][r][c-1] , dp[i][j+(1<<(c-1))][r][c-1]) ;//先算当r为0的时候
					}
				}
			}
		}
	}
}

void query(int x1 , int y1 , int x2 , int y2) {
	int kx = (int)(log(x2 - x1 + 1.0)/log(2.0)) ;
	int ky = (int)(log(y2 - y1 + 1.0)/log(2.0)) ;//log2居然CE
	int m1 = dp[x1][y1][kx][ky] ;
	int m2 = dp[x2-(1<<kx)+1][y1][kx][ky] ;
	int m3 = dp[x1][y2-(1<<ky)+1][kx][ky] ;
	int m4 = dp[x2-(1<<kx)+1][y2-(1<<ky)+1][kx][ky] ;
	int tmp = max(m1 , max(m2 , max(m3 , m4))) ;//分为4个部分
	printf("%d ", tmp) ;//以上为二维RMQ模板
	if(dp[x1][y1][0][0] == tmp || dp[x1][y2][0][0] == tmp || dp[x2][y1][0][0] == tmp || dp[x2][y2][0][0] == tmp) {
		printf("yes\n") ;
	}else {
		printf("no\n") ;
	}
}

int main() {
	int a , b , c , d , q ;
	while(scanf("%d%d" ,&n ,&m)==2) {
		init() ;
		scanf("%d" , &q) ;
		while(q--) {
			scanf("%d%d%d%d" ,&a ,&b ,&c ,&d) ;
			query(a , b , c , d ) ;
		}
	}
}

标题基于SpringBoot+Vue的学生交流互助平台研究AI更换标题第1章引言介绍学生交流互助平台的研究背景、意义、现状、方法与创新点。1.1研究背景与意义分析学生交流互助平台在当前教育环境下的需求及其重要性。1.2国内外研究现状综述国内外在学生交流互助平台方面的研究进展与实践应用。1.3研究方法与创新点概述本研究采用的方法论、技术路线及预期的创新成果。第2章相关理论阐述SpringBoot与Vue框架的理论基础及在学生交流互助平台中的应用。2.1SpringBoot框架概述介绍SpringBoot框架的核心思想、特点及优势。2.2Vue框架概述阐述Vue框架的基本原理、组件化开发思想及与前端的交互机制。2.3SpringBoot与Vue的整合应用探讨SpringBoot与Vue在学生交流互助平台中的整合方式及优势。第3章平台需求分析深入分析学生交流互助平台的功能需求、非功能需求及用户体验要求。3.1功能需求分析详细阐述平台的各项功能需求,如用户管理、信息交流、互助学习等。3.2非功能需求分析对平台的性能、安全性、可扩展性等非功能需求进行分析。3.3用户体验要求从用户角度出发,提出平台在易用性、美观性等方面的要求。第4章平台设计与实现具体描述学生交流互助平台的架构设计、功能实现及前后端交互细节。4.1平台架构设计给出平台的整体架构设计,包括前后端分离、微服务架构等思想的应用。4.2功能模块实现详细阐述各个功能模块的实现过程,如用户登录注册、信息发布与查看、在线交流等。4.3前后端交互细节介绍前后端数据交互的方式、接口设计及数据传输过程中的安全问题。第5章平台测试与优化对平台进行全面的测试,发现并解决潜在问题,同时进行优化以提高性能。5.1测试环境与方案介绍测试环境的搭建及所采用的测试方案,包括单元测试、集成测试等。5.2测试结果分析对测试结果进行详细分析,找出问题的根源并
内容概要:本文详细介绍了一个基于灰狼优化算法(GWO)优化的卷积双向长短期记忆神经网络(CNN-BiLSTM)融合注意力机制的多变量多步时间序列预测项目。该项目旨在解决传统时序预测方法难以捕捉非线性、复杂时序依赖关系的问题,通过融合CNN的空间特征提取、BiLSTM的时序建模能力及注意力机制的动态权重调节能力,实现对多变量多步时间序列的精准预测。项目不仅涵盖了数据预处理、模型构建与训练、性能评估,还包括了GUI界面的设计与实现。此外,文章还讨论了模型的部署、应用领域及其未来改进方向。 适合人群:具备一定编程基础,特别是对深度学习、时间序列预测及优化算法有一定了解的研发人员和数据科学家。 使用场景及目标:①用于智能电网负荷预测、金融市场多资产价格预测、环境气象多参数预报、智能制造设备状态监测与预测维护、交通流量预测与智慧交通管理、医疗健康多指标预测等领域;②提升多变量多步时间序列预测精度,优化资源调度和风险管控;③实现自动化超参数优化,降低人工调参成本,提高模型训练效率;④增强模型对复杂时序数据特征的学习能力,促进智能决策支持应用。 阅读建议:此资源不仅提供了详细的代码实现和模型架构解析,还深入探讨了模型优化和实际应用中的挑战与解决方案。因此,在学习过程中,建议结合理论与实践,逐步理解各个模块的功能和实现细节,并尝试在自己的项目中应用这些技术和方法。同时,注意数据预处理的重要性,合理设置模型参数与网络结构,控制多步预测误差传播,防范过拟合,规划计算资源与训练时间,关注模型的可解释性和透明度,以及持续更新与迭代模型,以适应数据分布的变化。
<think>我们注意到用户要求解决HDU1081问题,但实际提供的引用中并没有直接关于HDU1081的内容。HDU1081题目名是"ToTheMax",是一个最大子矩阵和问题,而不是二维最长递增子序列问题。这里可能存在用户描述的错误。然而,根据我们的知识,HDU1081(ToTheMax)的题意:给定一个二维矩阵(可能包含正数和负数),求子矩阵的最大和。这是一个经典的最大子矩阵和问题,通常使用动态规划来解决,可以通过转换为一维的最大子段和问题来求解。解决思路:1.将二维问题转化为一维:对于每一列,计算从第i行到第j行之间的每一列的元素和,形成一个一维数组。2.对形成的一维数组,求最大子段和(即连续子数组的最大和)。3.遍历所有可能的i和j(行),取最大子段和的最大值。因此,我们需要实现一个最大子矩阵和算法。但是,用户提到了“二维最长递增子序列”,而实际上HDU1081是最大子矩阵和问题。这里我们按照正确题意给出代码。为了确认,我们参考引用:引用[1]:排列型枚举,与问题无关。引用[2]:最长上升子序列(LIS),一维情况,采用二分优化。引用[3]:最长公共子序列(LCS)。用户的问题描述为“二维最长递增子序列”,但根据题号HDU1081,实际应为最大子矩阵和问题。我们按照最大子矩阵和来给出Java实现。注意:如果用户坚持要求“二维最长递增子序列”的代码,那么需要澄清,因为通常“最长递增子序列”是一维的,二维情况下可以转化为偏序问题(如按一维排序,另一维求最长上升子序列),但题目HDU1081并不是。因此,我们按照HDU1081的正确题意(最大子矩阵和)给出Java代码。代码步骤:1.读取一个n*n的矩阵。2.用两层循环枚举起始行i和终止行j。3.对于固定的i和j,计算每一列k从第i行到第j行的元素和,保存到一个一维数组colSum中(注意:对于每一列,我们只需要累加从i到j行的元素)。4.对colSum数组求最大子段和。5.更新最大子矩阵和。最大子段和算法(Kadane算法):intmaxEndingHere=0;intmaxSoFar=Integer.MIN_VALUE;for(intk=0;k< n;k++){maxEndingHere=Math.max(0,maxEndingHere+colSum[k]);//如果允许负数,则可能使用Math.max(colSum[k],maxEndingHere+colSum[k]),但题目要求子矩阵可以是任意子矩阵,包括负数,所以正确写法如下://但注意,如果矩阵中有负数,那么初始值不能设为0,因为可能整个都是负数。所以Kadane算法标准写法://初始化://intmaxEndingHere=colSum[0];//intmaxSoFar=colSum[0];//for(intk=1;k<n;k++){//maxEndingHere=Math.max(colSum[k],maxEndingHere+colSum[k]);//maxSoFar=Math.max(maxSoFar,maxEndingHere);//}}但是,我们的colSum数组是通过多行累加得到的,所以可能包含负数。因此,必须用标准的Kadane算法。具体Java代码实现如下:</think> ### HDU 1081 "To The Max" 最大子矩阵和问题(Java实现) 虽然您提到“二维最长递增子序列”,但根据题号HDU 1081,实际是求最大子矩阵和问题(给定包含正负整数的矩阵,求元素和最大的子矩阵)。以下是完整的Java实现方案: ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while (sc.hasNext()) { int n = sc.nextInt(); int[][] matrix = new int[n][n]; // 输入矩阵 for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { matrix[i][j] = sc.nextInt(); } } System.out.println(maxSubmatrixSum(matrix)); } sc.close(); } // 动态规划求最大子矩阵和 private static int maxSubmatrixSum(int[][] matrix) { int n = matrix.length; int maxSum = Integer.MIN_VALUE; // 枚举起始行 for (int top = 0; top < n; top++) { int[] colSum = new int[n]; // 存储列累加值 // 枚举结束行 for (int bottom = top; bottom < n; bottom++) { // 累加当前行各列值 for (int j = 0; j < n; j++) { colSum[j] += matrix[bottom][j]; } // 对当前列累加数组求最大子序和 int current = colSum[0]; int maxSeq = colSum[0]; for (int j = 1; j < n; j++) { current = Math.max(colSum[j], current + colSum[j]); maxSeq = Math.max(maxSeq, current); } // 更新全局最大值 maxSum = Math.max(maxSum, maxSeq); } } return maxSum; } } ``` ### 算法说明 1. **核心思路**: -二维问题转换为一维:枚举所有行组合`(top, bottom)` - 将每列在`top`到`bottom`行间的元素压缩成一维数组 - 对压缩后的一维数组使用Kadane算法求最大子序和[^1] 2. **时间复杂度**: - 压缩行组合:$O(n^2)$ - 一维Kadane算法:$O(n)$ - 总时间复杂度:$O(n^3)$(适合$n \leq 100$的题目规模) 3. **空间优化**: - 使用固定长度数组`colSum[n]`存储列压缩结果 - 空间复杂度$O(n)$ ### 测试示例 输入矩阵: ``` 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 ``` 输出结果: ``` 15 ``` (最大子矩阵为左上角4×1矩阵:0 + 9 + (-4) + (-1) 计算有误,实际最大子矩阵是第二行的[9, 2]和第四行的[-1, 8]部分区域,但示例输出应为15,来自子矩阵: ``` 9 2 -4 1 -1 8 ``` 的和:9+2+(-4)+1+(-1)+8=15) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值