/*
* url: http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1031
* stratege: 求n1*x+n2*y=n, x*c1+y*c2的值最小, 扩展欧几里得,分2种情况考虑,x的最小正整数解, y的最小正整数解
* status:10090 Marbles Accepted C++ 0.020 2012-08-30 08:10:38
* Author: johnsondu
*/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std ;
#define LL long long
void Euclid (LL a, LL b, LL &d, LL &x, LL &y)
{
if (b == 0)
{
d = a ;
x = 1 ;
y = 0 ;
return ;
}
Euclid (b, a%b, d, x, y) ;
LL tmp = x ;
x = y ;
y = tmp - a/b*y ;
}
LL Gcd (LL x, LL y)
{
return y ? Gcd (y, x%y) : x ;
}
int main ()
{
LL n, n1, c1, n2, c2, d, x, y, x0, y0, mins, tx, ty, t;
while (scanf ("%lld", &n), n)
{
scanf ("%lld%lld", &c1, &n1) ;
scanf ("%lld%lld", &c2, &n2) ;
t = Gcd (n1, n2) ;
if (n%t)
{
printf ("failed\n") ;
continue ;
}
n1 /= t, n2 /= t, n /= t ;
Euclid (n1, n2, d, x, y) ;
mins = -1 ;
x *= n ;
tx = x0 = ((x%n2)+n2) % n2 ;
ty = y0 = (n-x0*n1)/n2 ;
if (y0 >= 0) //此时y0的为负数不可取
mins = (x0*c1 + y0*c2) ;
y *= n ;
y0 = ((y%n1)+n1) % n1 ;
x0 = (n-y0*n2)/n1 ;
if ((mins > x0*c1 + y0*c2 || mins == -1) && x0 >= 0) //x0为负数不可取
{
mins = (x0*c1 + y0*c2) ;
tx = x0 ;
ty = y0 ;
}
if (mins == -1)
printf ("failed\n") ;
else
printf ("%lld %lld\n", tx, ty) ;
}
return 0 ;
}