hdu 1024



Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 24332    Accepted Submission(s): 8356


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S 1, S 2, S 3, S 4  ... S x, ... S n  (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x  ≤ 32767). We define a function sum(i, j) = S i  + ... + S j  (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x  ≤ i y  ≤ j x  or i x  ≤ j y  ≤ j x  is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S 1, S 2, S 3  ... S n.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
  
  
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
  
  
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 
题意:
给出有n个元素的序列,将其分为m个字段,求字段和的最大值。(字段之间不能相交)。
dp[i][j]是前j个数够成i个字段的最大值。dp[i]要么与前面的数构成i个字段,要么独立的成为一个字段。方程:dp[j]=max(dp[j-1]+a[j],pre[j-1]+a[j])
代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
#define MAXN 1000000
#define INF 0x3f3f3f3f
int dp[MAXN+10];
int pre[MAXN+10];
int a[MAXN+10];
int main()
{
    int n,m;
    int i,j,MAX;
    while(scanf("%d%d",&m,&n)!=EOF)  //m为分的字段数目,n序列中元素的数目 
    {
        for(i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            pre[i]=0;
            dp[i]=0;
        }
        dp[0]=0; pre[0]=0;    
        for(i=1;i<=m;i++)
        {
            MAX=-INF;
            for(j=i;j<=n;j++)
            {
                dp[j]=max(dp[j-1]+a[j],pre[j-1]+a[j]); // 第j个元素与前面元素组成i个子段或者第j个元素单独成一个字段 
                pre[j-1]=MAX;  //更新是pre[j-1]是前j-1个元素最大的子段和 
                if(dp[j] > MAX)
					MAX=dp[j];
            }    
        }  
        printf("%d\n",MAX);         
    } 
    return 0;   
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值