Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 24332 Accepted Submission(s): 8356
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ i y ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S
1, S
2, S
3
... S
n.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8HintHuge input, scanf and dynamic programming is recommended.
题意:
给出有n个元素的序列,将其分为m个字段,求字段和的最大值。(字段之间不能相交)。
dp[i][j]是前j个数够成i个字段的最大值。dp[i]要么与前面的数构成i个字段,要么独立的成为一个字段。方程:dp[j]=max(dp[j-1]+a[j],pre[j-1]+a[j])
代码:
#include<stdio.h>
#include<algorithm>
using namespace std;
#define MAXN 1000000
#define INF 0x3f3f3f3f
int dp[MAXN+10];
int pre[MAXN+10];
int a[MAXN+10];
int main()
{
int n,m;
int i,j,MAX;
while(scanf("%d%d",&m,&n)!=EOF) //m为分的字段数目,n序列中元素的数目
{
for(i=1;i<=n;i++)
{
scanf("%d",&a[i]);
pre[i]=0;
dp[i]=0;
}
dp[0]=0; pre[0]=0;
for(i=1;i<=m;i++)
{
MAX=-INF;
for(j=i;j<=n;j++)
{
dp[j]=max(dp[j-1]+a[j],pre[j-1]+a[j]); // 第j个元素与前面元素组成i个子段或者第j个元素单独成一个字段
pre[j-1]=MAX; //更新是pre[j-1]是前j-1个元素最大的子段和
if(dp[j] > MAX)
MAX=dp[j];
}
}
printf("%d\n",MAX);
}
return 0;
}