linux ping命令

本文详细介绍了Ping命令的使用方法及其在网络故障排查中的应用。包括Ping命令的常见参数、返回信息及如何利用Ping估算网络速度。

Ping命令一直都在用,但具体详细的使用还不是很了解。下面整理下有关Ping命令的资料。

Ping是潜水艇人员的专用术语,表示回应的声纳脉冲,在网络中Ping 是一个十分好用的TCP/IP工具。它主要的功能是用来检测网络的连通情况和分析网络速度。

Ping的用途就是用来检测网络的连同情况和分析网络速度,但它是通过什么来显示连通呢?这首先要了解Ping的一些参数和返回信息。

以下是PING的一些参数

[root@centos6 kv]# ping -help
Usage: ping [-LRUbdfnqrvVaA] [-c count] [-i interval] [-w deadline]
            [-p pattern] [-s packetsize] [-t ttl] [-I interface or address]
            [-M mtu discovery hint] [-S sndbuf]
            [ -T timestamp option ] [ -Q tos ] [hop1 ...] destination

Ping的返回信息有Request Timed Out、Destination Net Unreachable和Bad IP address还有Source quench received。

Request Timed Out这个信息表示对方主机可以到达到TIME OUT,这种情况通常是为对方拒绝接收你发给它的数据包造成数据包丢失。大多数的原因可能是对方装有防火墙或已下线。

Destination Net Unreachable这个信息表示对方主机不存在或者没有跟对方建立连接。这里要说明一下destination host unreachable和time out的区别,如果所经过的路由器的路由表中具有到达目标的路由,而目标因为其它原因不可到达,这时候会出现time out,如果路由表中连到达目标的路由都没有,那就会出现destination host unreachable。

Bad IP address 这个信息表示你可能没有连接到DNS服务器所以无法解析这个IP地址,也可能是IP地址不存在。

Source quench received信息比较特殊,它出现的机率很少。它表示对方或中途的服务器繁忙无法回应。


Ping这个命令除了可以检查网络的连通和检测故障以外,还有一个比较有趣的用途,那就是可以利用它的一些返回数据,来估算你跟某台主机之间的速度是多少字节每秒

我们先来看看它有那些返回数据。

Pinging 202.105.136.105 with 32 bytes of data:

Reply from 202.105.136.105: bytes=32 time=590ms TTL=114

Reply from 202.105.136.105: bytes=32 time=590ms TTL=114

Reply from 202.105.136.105: bytes=32 time=590ms TTL=114

Reply from 202.105.136.105: bytes=32 time=601ms TTL=114

Ping statistics for 202.105.136.105:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Minimum = 590ms, Maximum = 601ms, Average = 593ms

在例子中bytes=32表示ICMP报文中有32个字节的测试数据(这是估算速度的关键数据),time=590ms是往返时间。


man ping

PING(8)                System Manager’s Manual: iputils                PING(8)
NAME
       ping, ping6 - send ICMP ECHO_REQUEST to network hosts
SYNOPSIS
       ping [ -LRUbdfnqrvVaAB]  [ -c count]  [ -i interval]  [ -l preload]  [ -p pattern]  [ -s packetsize]  [ -t ttl]  [ -w deadline]  [ -F flowlabel]  [
       -I interface]  [ -M hint]  [ -Q tos]  [ -S sndbuf]  [ -T timestamp option]  [ -W timeout]  [ hop ...]  destination
DESCRIPTION
       ping uses the ICMP protocol’s mandatory ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from  a  host  or  gateway.   ECHO_REQUEST  datagrams
       (‘‘pings’’) have an IP and ICMP header, followed by a struct timeval and then an arbitrary number of ‘‘pad’’ bytes used to fill out the packet.

OPTIONS
       -a     Audible ping.
       -A     Adaptive ping. Interpacket interval adapts to round-trip time, so that effectively not more than one (or more, if preload is set) unanswered
              probes present in the network. Minimal interval is 200msec for not super-user.  On networks with low rtt this mode is essentially equivalent
              to flood mode.
       -b     Allow pinging a broadcast address.
       -B     Do not allow ping to change source address of probes.  The address is bound to one selected when ping starts.
       -c count
              Stop after sending count ECHO_REQUEST packets. With deadline option, ping waits for count ECHO_REPLY packets, until the timeout expires.
       -d     Set the SO_DEBUG option on the socket being used.  Essentially, this socket option is not used by Linux kernel.
       -F flow label
              Allocate and set 20 bit flow label on echo request packets.  (Only ping6). If value is zero, kernel allocates random flow label.
       -f     Flood ping. For every ECHO_REQUEST sent a period ‘‘.’’ is printed, while for ever ECHO_REPLY received a backspace is printed.  This provides
              a rapid display of how many packets are being dropped.  If interval is not given, it sets interval to zero and outputs packets  as  fast  as
              they come back or one hundred times per second, whichever is more.  Only the super-user may use this option with zero interval.
       -i interval
              Wait  interval  seconds  between sending each packet.  The default is to wait for one second between each packet normally, or not to wait in
              flood mode. Only super-user may set interval to values less 0.2 seconds.
       -I interface address
              Set source address to specified interface address. Argument may be numeric IP address or  name  of  device.  When  pinging  IPv6  link-local
              address this option is required.
       -l preload
              If preload is specified, ping sends that many packets not waiting for reply.  Only the super-user may select preload more than 3.
       -L     Suppress loopback of multicast packets.  This flag only applies if the ping destination is a multicast address.
       -n     Numeric output only.  No attempt will be made to lookup symbolic names for host addresses.
       -p pattern
              You may specify up to 16 ‘‘pad’’ bytes to fill out the packet you send.  This is useful for diagnosing data-dependent problems in a network.
              For example, -p ff will cause the sent packet to be filled with all ones.
       -Q tos Set Quality of Service -related bits in ICMP datagrams.  tos can be either decimal or hex number.  Traditionally (RFC1349), these have  been
              interpreted  as: 0 for reserved (currently being redefined as congestion control), 1-4 for Type of Service and 5-7 for Precedence.  Possible
              settings for Type of Service are: minimal cost: 0x02, reliability: 0x04, throughput: 0x08, low delay: 0x10.  Multiple TOS bits should not be
              set  simultaneously.   Possible  settings  for  special  Precedence  range  from  priority  (0x20)  to net control (0xe0).  You must be root
              (CAP_NET_ADMIN capability) to use Critical or higher precedence value.  You cannot set bit 0x01 (reserved) unless ECN has  been  enabled  in
              the  kernel.   In  RFC2474,  these fields has been redefined as 8-bit Differentiated Services (DS), consisting of: bits 0-1 of separate data
              (ECN will be used, here), and bits 2-7 of Differentiated Services Codepoint (DSCP).
       -q     Quiet output.  Nothing is displayed except the summary lines at startup time and when finished.
       -R     Record route.  Includes the RECORD_ROUTE option in the ECHO_REQUEST packet and displays the route buffer on returned packets.  Note that the
              IP header is only large enough for nine such routes.  Many hosts ignore or discard this option.
       -r     Bypass  the  normal routing tables and send directly to a host on an attached interface.  If the host is not on a directly-attached network,
              an error is returned.  This option can be used to ping a local host through an interface that has no route through it provided the option -I
              is also used.
       -s packetsize
              Specifies  the  number of data bytes to be sent.  The default is 56, which translates into 64 ICMP data bytes when combined with the 8 bytes
              of ICMP header data.
       -S sndbuf
              Set socket sndbuf. If not specified, it is selected to buffer not more than one packet.
       -t ttl Set the IP Time to Live.
       -T timestamp option
              Set special IP timestamp options.  timestamp option may be either tsonly (only timestamps), tsandaddr (timestamps and addresses)  or  tspre-
              spec host1 [host2 [host3 [host4]]] (timestamp prespecified hops).
       -M hint
              Select  Path  MTU  Discovery  strategy.   hint  may be either do (prohibit fragmentation, even local one), want (do PMTU discovery, fragment
              locally when packet size is large), or dont (do not set DF flag).
       -U     Print full user-to-user latency (the old behaviour). Normally ping prints network round trip time, which can be different f.e.  due  to  DNS
              failures.
       -v     Verbose output.
       -V     Show version and exit.
       -w deadline
              Specify  a timeout, in seconds, before ping exits regardless of how many packets have been sent or received. In this case ping does not stop
              after count packet are sent, it waits either for deadline expire or until count probes are answered or for some error notification from net-
              work.
       -W timeout
              Time to wait for a response, in seconds. The option affects only timeout in absense of any responses, otherwise ping waits for two RTTs.
       When  using ping for fault isolation, it should first be run on the local host, to verify that the local network interface is up and running. Then,
       hosts and gateways further and further away should be ‘‘pinged’’. Round-trip times and packet loss statistics are computed.  If  duplicate  packets
       are  received, they are not included in the packet loss calculation, although the round trip time of these packets is used in calculating the mini-
       mum/average/maximum round-trip time numbers.  When the specified number of packets have been sent (and received) or if the  program  is  terminated
       with a SIGINT, a brief summary is displayed. Shorter current statistics can be obtained without termination of process with signal SIGQUIT.
       If ping does not receive any reply packets at all it will exit with code 1. If a packet count and deadline are both specified, and fewer than count
       packets are received by the time the deadline has arrived, it will also exit with code 1.  On other error it exits with code 2. Otherwise it  exits
       with code 0. This makes it possible to use the exit code to see if a host is alive or not.
       This program is intended for use in network testing, measurement and management.  Because of the load it can impose on the network, it is unwise to
       use ping during normal operations or from automated scripts.
ICMP PACKET DETAILS
       An IP header without options is 20 bytes.  An ICMP ECHO_REQUEST packet contains an additional 8 bytes worth of ICMP header followed by an arbitrary
       amount  of  data.   When  a  packetsize  is given, this indicated the size of this extra piece of data (the default is 56). Thus the amount of data
       received inside of an IP packet of type ICMP ECHO_REPLY will always be 8 bytes more than the requested data space (the ICMP header).
       If the data space is at least of size of struct timeval ping uses the beginning bytes of this space to include a timestamp which  it  uses  in  the
       computation of round trip times.  If the data space is shorter, no round trip times are given.
DUPLICATE AND DAMAGED PACKETS
       ping  will  report duplicate and damaged packets.  Duplicate packets should never occur, and seem to be caused by inappropriate link-level retrans-
       missions.  Duplicates may occur in many situations and are rarely (if ever) a good sign, although the presence of low levels of duplicates may  not
       always be cause for alarm.
       Damaged  packets are obviously serious cause for alarm and often indicate broken hardware somewhere in the ping packet’s path (in the network or in
       the hosts).
TRYING DIFFERENT DATA PATTERNS
       The (inter)network layer should never treat packets differently depending on the data contained in the data portion.  Unfortunately, data-dependent
       problems  have  been  known  to sneak into networks and remain undetected for long periods of time.  In many cases the particular pattern that will
       have problems is something that doesn’t have sufficient ‘‘transitions’’, such as all ones or all zeros, or a pattern right at  the  edge,  such  as
       almost all zeros.  It isn’t necessarily enough to specify a data pattern of all zeros (for example) on the command line because the pattern that is
       of interest is at the data link level, and the relationship between what you type and what the controllers transmit can be complicated.
       This means that if you have a data-dependent problem you will probably have to do a lot of testing to find it.  If you are lucky, you may manage to
       find  a  file  that  either  can’t be sent across your network or that takes much longer to transfer than other similar length files.  You can then
       examine this file for repeated patterns that you can test using the -p option of ping.
TTL DETAILS
       The TTL value of an IP packet represents the maximum number of IP routers that the packet can go through before  being  thrown  away.   In  current
       practice you can expect each router in the Internet to decrement the TTL field by exactly one.
       The  TCP/IP  specification states that the TTL field for TCP packets should be set to 60, but many systems use smaller values (4.3 BSD uses 30, 4.2
       used 15).
       The maximum possible value of this field is 255, and most Unix systems set the TTL field of ICMP ECHO_REQUEST packets to 255.  This is why you will
       find you can ‘‘ping’’ some hosts, but not reach them with telnet(1) or ftp(1).
       In  normal  operation  ping  prints the ttl value from the packet it receives.  When a remote system receives a ping packet, it can do one of three
       things with the TTL field in its response:
       Not change it; this is what Berkeley Unix systems did before the 4.3BSD Tahoe release. In this case the TTL value in the received packet will  be
         255 minus the number of routers in the round-trip path.
       Set  it to 255; this is what current Berkeley Unix systems do.  In this case the TTL value in the received packet will be 255 minus the number of
         routers in the path from the remote system to the pinging host.
       Set it to some other value. Some machines use the same value for ICMP packets that they use for TCP packets, for example either 30 or 60.  Others
         may use completely wild values.
BUGS
       Many Hosts and Gateways ignore the RECORD_ROUTE option.
       The  maximum  IP  header length is too small for options like RECORD_ROUTE to be completely useful.  There’s not much that that can be done about
         this, however.
       Flood pinging is not recommended in general, and flood pinging the broadcast address should only be done under very controlled conditions.
SEE ALSO
       netstat(1), ifconfig(8).
HISTORY
       The ping command appeared in 4.3BSD.
       The version described here is its descendant specific to Linux.
SECURITY
       ping requires CAP_NET_RAWIO capability to be executed. It may be used as set-uid root.
AVAILABILITY
       ping is part of iputils package and the latest versions are  available in source form at http://www.skbuff.net/iputils/iputils-current.tar.bz2.
iputils-071127                   19 July 2011                          PING(8)

<think>好的,我现在需要回答用户关于Linux系统中ping命令的用法的问题。首先,我要确保自己正确理解用户的需求。用户明确提到了想了解ping命令的使用方法,并且引用了三个相关的资料,这些资料里提到了一些参数,比如-t、-n、-l,还有IPv6相关的ping6命令。 接下来,我要组织回答的结构。根据用户的系统级指令,回答需要结构清晰,分步骤说明,并且引用资料中的内容。同时,必须使用中文,并且正确应用LaTeX格式的行内公式和独立公式,不过在这个问题中可能数学公式用得不多,但如果有相关的地方需要注意。 首先,我应该从最基本的ping命令开始,解释不带参数的用法,然后逐步介绍常见的参数选项。每个参数需要给出示例,例如使用-c指定次数,-i设置间隔,-s调整包大小,-t设置TTL等。同时,用户提供的引用中提到了IPv6的ping6命令,这部分也需要包含在内,说明如何使用。 然后,我需要确保每个引用的内容都被正确标注。比如引用[1]提到了不带参数、-t、-n、-l参数,引用[2]强调了ping的重要性,引用[3]提到了ping6的使用。在回答中,每提到这些点的时候,要在句末自然地加上引用标识,比如[^1]、[^2]、[^3]。 另外,用户要求生成相关问题,所以我需要最后添加几个相关问题,这些问题应该与ping命令相关,帮助用户进一步学习。比如如何测试网络延迟、如何持续ping、如何调整包大小等。 需要注意的是,避免使用Markdown格式,但用户提供的示例中在相关问题部分用了列表,所以可能需要调整。不过根据用户的最新指示,回答应该使用中文,结构清晰,分步骤说明,所以可能用编号列表更合适。 在检查过程中,要确保所有技术细节准确,比如参数的正确性,示例命令的正确性。例如,-c参数在Linux中是发送的次数,而Windows中使用-n,但用户引用中提到的-n可能是在Linux中的某个变体,不过根据标准Linux ping命令-c是次数,所以需要确认引用中的内容是否正确。根据引用[1],用户提到的是-n ${count}参数,但可能在Linux中实际是-c,这里可能存在混淆。因为引用[1]和引用[3]可能来自不同的来源,需要核实。 根据我的知识,Linuxping命令中,指定次数的参数是-c,而Windows中是-n。但根据用户提供的引用[1],里面提到的是-n参数,这可能存在错误,或者来源可能有误。这时候需要如何处理?可能需要指出这一点,或者根据引用来调整,但这样会导致不准确。 例如,用户引用[1]说:“`ping` 命令的 `-n ${count}` 参数”,但实际在Linux中,-n是禁止反向域名解析,而-c才是次数。这里可能存在引用资料中的错误。如何处理这个矛盾? 可能的解决方案是:在回答中正确说明Linux中的参数是-c,并指出引用中的资料可能存在混淆,或者用户提供的引用可能有误。但根据用户的指示,需要引用这些资料,所以可能需要按照引用中的内容来,但这样会导致回答不准确。 这时候可能需要进一步确认。例如,引用[1]可能描述的是Windows系统中的ping命令,而引用[3]提到的是Linux系统中的ping命令。用户的问题是关于Linux系统的,所以应该以Linux的参数为准。例如,在Linux中: - -c count:指定发送次数 - -i interval:设置间隔 - -s size:指定包大小 - -t ttl:设置TTL 而引用[1]提到的-n参数在Linux中对应的是不进行DNS解析,而指定次数的是-c。因此,用户提供的引用可能存在错误,或者来源可能混淆了不同系统的参数。在这种情况下,应该以正确的Linux用法为准,并在回答中指出正确的参数,同时标注引用来源可能存在差异。 例如,在回答中说明:“使用`-c`参数指定发送次数(如`ping -c 4 example.com`)”,这样可能更准确,同时引用来源可能提到的-n参数可能适用于其他系统,但在Linux中是-c。或者,可能需要指出引用中的不一致,但这样可能会让用户困惑。 或者,可能用户提供的引用[1]本身有误,比如将Windows的参数与Linux混淆。在这种情况下,正确的做法是遵循标准的Linux ping命令参数,并在回答中正确说明,同时在引用时标注来源,但指出可能的差异。 例如,在回答中,当提到发送次数时,正确使用`-c`参数,并引用[1]和[2],但说明某些资料可能提到不同的参数,但在Linux中正确的方式是使用`-c`。 不过,这可能超出用户的需求,用户可能只需要根据提供的引用进行回答,但这样会导致错误。因此,我需要权衡准确性和引用资料的正确性。 可能用户提供的引用[1]有误,或者存在打字错误。例如,引用[1]中的“-n”参数可能是针对其他系统,而用户的问题是关于Linux的,因此正确的参数是-c。这种情况下,正确的做法是给出正确的参数,并在引用中注明,例如: “使用`-c`参数指定发送次数,例如`ping -c 5 example.com`”,而引用[1]可能提到的是其他系统,因此可能忽略该引用中的-n参数,或者指出差异。 但根据用户给出的引用[1],它似乎将-n作为次数参数,这可能是一个错误。然而,根据引用[3],其中提到ping6的使用与ping类似,地址换成IPv6,这可能正确。因此,需要处理引用中的矛盾。 可能的解决方法是:在回答中正确描述Linux中的参数,并引用正确的来源。例如,引用[2]提到“掌握它的正确使用方法”,可能更倾向于正确参数,而引用[3]说明ping6的使用。引用[1]可能描述的是Windows的ping命令,因此用户的问题是关于Linux的,所以应忽略引用[1]中的错误参数,或者指出区别。 例如,在回答中: “2. 指定发送次数:使用`-c`参数(例如`ping -c 4 example.com`),这会限制测试包的发送次数[^3]。” 而引用[1]中的-n参数可能在Linux中不是用来指定次数的,所以不引用它。或者,可能需要指出,某些系统使用不同的参数,但在Linux中使用-c。 但用户提供的引用[1]属于站内引用,必须被引用。因此,可能需要指出,根据引用[1],某些情况下可能使用-n,但在Linux中正确的参数是-c,并引用其他资料。 这可能会导致混淆,但为了符合用户的引用要求,可能需要调整。 或者,可能用户提供的引用[1]中的-n参数是排版错误,实际应为-c。这种情况下,可能用户引用的资料有误,但作为回答者,应该给出正确的信息,同时引用提供的资料。 这确实是一个挑战。可能正确的做法是,按照正确的Linux用法回答,并引用资料中正确的部分,比如引用[2]和[3],而引用[1]中关于-n参数的部分可能存在系统差异,需要指出。 例如,在回答中: “2. 指定发送次数:在Linux中使用`-c`参数,例如`ping -c 5 example.com`[^3]。注意某些系统(如Windows)可能使用`-n`参数实现类似功能。” 这样既提供了正确的信息,又引用了用户提供的资料,同时指出了系统差异。 这样处理可能更合适,既准确又符合引用要求。 接下来,继续组织回答的结构: 1. 基本用法:ping + 域名/IP 2. 常见参数: - -c 次数 - -i 间隔 - -s 包大小 - -t TTL - -W 超时时间 3. IPv6测试:使用ping6命令 4. 停止方式:Ctrl+C 每个部分需要结合引用资料中的内容,正确标注引用。 例如,在基本用法中引用[1]和[2],在参数部分引用对应的资料,IPv6部分引用[3]。 此外,示例代码块需要使用正确的格式,用反引号包裹命令示例。 最后,生成相关问题,如如何测试网络延迟、如何持续ping、如何调整包大小等。 现在,将这些内容整合成一个结构清晰的中文回答,确保正确引用,参数准确,并且涵盖用户的需求。</think>### Linux系统中ping命令的使用方法 #### 1. 基本用法 在终端输入`ping`命令后接域名或IP地址即可启动网络连通性测试。例如: ```bash ping example.com # 测试与example.com的连通性 ping 192.168.1.1 # 测试与指定IP的连通性 ``` 默认会持续发送数据包,按`Ctrl+C`手动停止。 --- #### 2. 常用参数详解 1. **指定发送次数** 使用`-c`参数限制测试包的发送次数(例如发送4次): ```bash ping -c 4 example.com ``` *注:Windows系统中使用`-n`参数实现类似功能。* 2. **调整发包间隔** 通过`-i`参数设置发包间隔(单位为秒,需管理员权限设置小于0.2秒): ```bash sudo ping -i 0.5 example.com # 每0.5秒发送一次 ``` 3. **自定义数据包大小** 使用`-s`参数定义数据包大小(单位:字节): ```bash ping -s 1024 example.com # 发送1024字节的包 ``` 4. **设置TTL生存时间** 通过`-t`参数限制数据包的最大跳数: ```bash ping -t 30 example.com # TTL设为30 ``` 5. **超时等待时间** 使用`-W`参数定义响应超时时间(单位:秒): ```bash ping -W 2 example.com # 2秒未响应则判定超时 ``` --- #### 3. 高级功能 - **IPv6测试** 使用`ping6`命令测试IPv6地址,用法与`ping`类似: ```bash ping6 2001:db8::1 # 测试IPv6地址 ``` - **持续测试(Windows特有)** 在Windows系统中,可通过`-t`参数实现无限次发送(Linux默认持续发送): ```bash ping -t example.com # Windows中持续测试 ``` --- #### 4. 输出解读 命令输出包含以下关键信息: - **时间序列**:如`64 bytes from 192.168.1.1`表示收到回复。 - **统计摘要**: ```bash --- example.com ping statistics --- 4 packets transmitted, 4 received, 0% packet loss # 丢包率 rtt min/avg/max/mdev = 10.2/15.3/20.1/3.8 ms # 往返时间统计 ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值