No. 26 - Minimal Number of Coins for Change

本文详细介绍了如何使用动态规划解决最小硬币数量换零钱的问题,通过迭代过程和表格化方法,实现高效求解。包括核心算法原理、代码实现及实例分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

No. 26 - Minimal Number of Coins for Change


Problem: Please implement a function which gets the minimal number of coins, whose value is v 1, v 2, …, v n, to make change for an amount of money with value t. Any coin with value v i may duplicate for any times to make change.

For example, the minimal number of coins to make change for 15 out of a set of coins with value 1, 3, 9, 10 is 3. We can choose two coins with value 3 and a coin with value 9. The number of coins for other choices should be greater than 3.

Analysis: Firstly let us define a function f(t) which is the minimal number of coins to make change for total value t. If there are n different coins, we have n choices to make change for value t: we can add a coin with value v 1 into a set of coins whose total value is t-v 1. The minimal number of coins to get value t-v 1 is f(t-v 1). Similarly, we can add a coin with value v 2 into a set of coins whose total value is t-v 2. The minimal number of coins to get value t-v 2 is f(t-v 2)…

Therefore, we divide a problem to calculate f(t) into n sub-problems: f(t-v 1), f(t-v 2), …, f(t-v n). We can get a formal equation for f(t) as the following accordingly:


This equation can be implemented with recursion easily. However, the recursive solution will cause serious performance issues since there are overlaps when we divide this problem into n sub-problems. A better solution is to utilize iteration, and store the result of sub-problems into a table (as the Table 1).

In the Table 1, each column except the first one is to denote the number of coins to make change for a specific value. We can calculate the numbers in the Table 1 from left to right, to simulate the iterative process to get the result of f(15).

For instance, there are two numbers 4 and 2 under the column title “6”. We have two alternatives to make change for 6: the first one is to add a coin with value 1 to a set of coins whose total value is 5. Since the minimal number of coins to get value 5 is 3 (highlighted number under the column tile “5”), the number in the first cell under column title “6” is 4 (4=3+1). The second choice is to add a coin with value 3 to a set of coins whose total value is 3. Since the minimal number of coins to get value 3 is 1 (highlighted number under the column tile “3”), the number in the second cell under column title “6” is 2 (2=1+1). We highlight the number 2 in the column under tile 6 because 2 is less than 4.


0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
1
0
1
2
3
2
3
4
3
4
5
2
2
3
3
4
5
3
0
-
-
1
2
3
2
3
4
3
4
5
2
2
3
3
9
0
-
-
-
-
-
-
-
-
1
2
3
2
3
4
3
10
0
-
-
-
-
-
-
-
-
-
1
2
3
2
3
4
Table 1: The iterative process to calculate the minimal number of coins to make changes for 15.

Even though we have a 2-D matrix to show the iterative process, it only requires a 1-D array for coding, because it is only necessary to store the minimal number of coins to make change for each total value. The sample code is shown below:

int GetMinCount( int total,  int* coins,  int length)
{
     int* counts =  new  int[total + 1];
    counts[0] = 0;
   
     const  int MAX = 0x7FFFFFFF;

     for( int i = 1; i <= total; ++ i)
    {
         int count = MAX;
         for( int j = 0; j < length; ++ j)
        {
             if(i - coins[j] >= 0 && count > counts[i - coins[j]])
                count = counts[i - coins[j]];
        }

         if(count < MAX)
            counts[i] = count + 1;
         else
            counts[i] = MAX;
    }

     int minCount = counts[total];
     delete[] counts;

     return minCount;
}

The author Harry He owns all the rights of this post. If you are going to use part of or the whole of this ariticle in your blog or webpages,  please add a reference to  http://codercareer.blogspot.com/. If you are going to use it in your books, please contact me (zhedahht@gmail.com) . Thanks.

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值