No. 24 - Intersection of Sorted Arrays

本文探讨了两个已排序数组的交集问题,提出两种高效算法:一种为O(m+n)时间复杂度的双指针法,适用于任意长度的数组;另一种为O(nlogm)时间复杂度的方法,特别适合当一个数组远长于另一个数组的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

No. 24 - Intersection of Sorted Arrays

 

Problem: Please implement a function which getsthe intersection of two sorted arrays. Assuming numbers in each array areunique.

 

For example, ifthe two sorted arrays as input are {1, 4, 7, 10, 13} and {1, 3, 5, 7, 9}, itreturns an intersection array with numbers {1, 7}.

 

Analysis: An intuitive solution for this problemis to check whether every number in the first array (denoted as array1) is in the second array (denoted as array2). If the length of array1 is m, and the length of array2 is n, its overall time complexity is O(m*n)based on linear search. We have two better solutions.

 

Solution 1: With O(m+n) Time

 

It is noticeablethat the two input arrays are sorted. Supposing a number number1 in array1equals to a number number2 in array2, the numbers after number1 in array1 should be greater than the numbersbefore number2 in array2. Therefore, it is not necessary tocompare the numbers after number1 in array1 with numbers before number2 in array2. It improves efficiency since manycomparisons are eliminated.

 

The sample codefor this solution is shown below:

 

void GetIntersection_solution1(const vector<int>& array1,

                     const vector<int>& array2,

                    vector<int>& intersection)

{

   vector<int>::const_iterator iter1 =array1.begin();

   vector<int>::const_iterator iter2 =array2.begin();

 

   intersection.clear();

 

    while(iter1 != array1.end() && iter2 !=array2.end())

   {

        if(*iter1 == *iter2)

       {

           intersection.push_back(*iter1);

           ++ iter1;

           ++ iter2;

       }

        else if(*iter1 < *iter2)

           ++ iter1;

        else

           ++ iter2;

   }

}

 

Since it onlyrequires to scan two arrays once, its time complexity is O(m+n).

 

Solution 2: With O(nlogm) Time

 

As we know, abinary search algorithm requires O(logm) time to find a number in anarray with length m. Therefore, if we search each number of an array withlength n from an array with lengthm, itsoverall time complexity is O(nlogm). If m is much greater than n, O(nlogm) is actuallyless than O(m+n). Therefore, we can implement a new and bettersolution based on binary search in such a situation. 

 

For instance,the following same code is suitable when array1 is much longer than array2.

 

/* === Supposingarray1 is much longer than array2 === */

void GetIntersection_solution2(const vector<int>& array1,

                     const vector<int>& array2,

                    vector<int>& intersection)

{

   intersection.clear();

   

   vector<int>::const_iterator iter1 =array1.begin();

    while(iter1 != array1.end())

   {

        if(binary_search(array2.begin(), array2.end(), *iter1))

           intersection.push_back(*iter1);

   }

}

 

The author Harry Heowns all the rights of this post. If you are going to use part of or the wholeof this ariticle in your blog or webpages,  please add a reference to   http://codercareer.blogspot.com/ . If you are going to use it in your books,please contact me (zhedahht@gmail.com) . Thanks.
基于Spring Boot搭建的一个多功能在线学习系统的实现细节。系统分为管理员和用户两个主要模块。管理员负责视频、文件和文章资料的管理以及系统运营维护;用户则可以进行视频播放、资料下载、参与学习论坛并享受个性化学习服务。文中重点探讨了文件下载的安全性和性能优化(如使用Resource对象避免内存溢出),积分排行榜的高效实现(采用Redis Sorted Set结构),敏感词过滤机制(利用DFA算法构建内存过滤树)以及视频播放的浏览器兼容性解决方案(通过FFmpeg调整MOOV原子位置)。此外,还提到了权限管理方面自定义动态加载器的应用,提高了系统的灵活性和易用性。 适合人群:对Spring Boot有一定了解,希望深入理解其实际应用的技术人员,尤其是从事在线教育平台开发的相关从业者。 使用场景及目标:适用于需要快速搭建稳定高效的在线学习平台的企业或团队。目标在于提供一套完整的解决方案,涵盖从资源管理到用户体验优化等多个方面,帮助开发者更好地理解和掌握Spring Boot框架的实际运用技巧。 其他说明:文中不仅提供了具体的代码示例和技术思路,还分享了许多实践经验教训,对于提高项目质量有着重要的指导意义。同时强调了安全性、性能优化等方面的重要性,确保系统能够应对大规模用户的并发访问需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值