[Cloud Computing]Patterns: Dynamic Data Normalization

针对云消费者在存储设备中产生的大量冗余数据问题,提出了动态数据归一化方案。该方案通过自动化的数据处理流程避免了冗余数据的存储,从而优化了存储设备的容量与性能。采用数据去重复技术在块级或文件级检测并消除冗余数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dynamic Data Normalization (Erl, Naserpour)

How can redundant data within cloud storage devices be automatically avoided?

Problem

Cloud consumers may store large volumes of redundant data within cloud storage devices, thereby bloating the storage architecture and compromising data access performance.

Solution

Data received by cloud consumers is automatically normalized so that redundant data is avoided and cloud storage device capacity and performance is optimized.

Application

Data de-duplication technology is used to detect and eliminate redundant data at block or file-based levels.

In Part A, datasets containing redundant data unnecessarily bloat data storage. The Dynamic Data Normalization pattern results in the constant and automatic streamlining of data as shown in Part B, regardless of how denormalized the data received from the cloud consumer is.

NIST Reference Architecture Mapping

This pattern relates to the highlighted parts of the NIST reference architecture, as follows:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值