深度学习及神经网络学习总结

深度学习及神经网络学习总结

ps:我是在高一的时候第一次脑海中接触神经网络这个概念......,注意只是接触,一直扔到现在

1. 简介

    神经网络和深度学习是由Michael Nielsen所写,其特色是:兼顾理论和实战,是一本供初学者深入理解Deep Learning的好书。


2. 感知器与sigmoid神经元

2.1 感知器(Perceptrons)

     感知器工作原理:接收一系列二进制输入,经过特定的规则计算之后,输出一个简单的二进制。

     

     计算规则:通过引入权重(weights)表示每个输入对于输出的重要性,则有

    

    记wx=jwjxj,b=-threshold,则有

    

    其w是权重,b是偏差。

2.2 Sigmoid神经元(Sigmoid Neurons)

    为了使学习变得可能,需要具备的【学习特征】:权重或偏差有较小的变化,导致输出也有较小的变化。如下图所示:

        

      感知器网络存在的缺陷是:某个感知器较小的权重或偏差变化,可能导致输出在0与1之间进行翻转。所以包含感知器的网络不具备【学习特征】。

   幸运的是:Sigmoid神经元具有此【学习特征】,即其较小的权重或偏差变化,导致其输出变化较小。

   Sigmoid函数:

       

   Sigmoid神经元输出:

        

    感知器与sigmoid神经元的差别:

     1) 感知器只输出0或1

     2)sigmoid神经元不只输出0或1,而可输出[0,1]之间的任意值

3. 神经网络架构

    

3.1 手写数字识别

    

    训练图像大小为28x28,每个训练图像有一个手写数字。

    在输出层,如果第一个神经元被激活(即其输出接近1),则此网络认为此手写数字为0;

           如果第二个神经元被激活(即其输出接近1),则此网络认为此手写数字为1;

           其它以此类推。

3.2 算法描述

    设x表示训练图像,则x是一个28x28=784维列向量。

    表示输入图片x是数字6   。

    需要寻找一个算法来发现w和b,使其输出接近标签值,为了量化接近程序,定义如下成本函数:

    

    w:所有权重的集合

    b:所有偏差的集合

    n:训练样本数

    a: 输出向量(其值依赖x,w,b)

    x:一幅训练图像

    ||v||:表示向量的范数,即向量的长度

    C:二次成本函数(mean squared error or MSE)

    如果接近于0,表示y(x)接近输出a,即学习效果很好。

    此成本函数中,w和b为变量。

    注:hidden layers和output layer中的每个神经元对应一个组w、b。

3.2.1 学习目标

    如何找到满足要求的w和b:答案是梯度下降法(Gradient Descent)

    1)最小化二次成本函数

    2)检测分类的准确性

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值