numpy中的brodcast

本文深入解析了numpy库中broadcasting机制的工作原理,展示了如何利用该机制处理不同形状的数组进行数学运算,通过具体实例说明了兼容性的判断标准及数组拓展过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

broadcasting机制的功能是为了方便不同shape的array(numpy库的核心数据结构)进行数学运算。

当操作两个array时,numpy会逐个比较它们的shape(构成的元组tuple),只有在下述情况下,两arrays才算兼容:

  1. 相等
  2. 其中一个为1,(进而可进行拷贝拓展已至,shape匹配)

注意比较是从后往前对齐

Image (3d array):  256 x 256 x 3
Scale (1d array):              3
Result (3d array): 256 x 256 x 3

A      (4d array):  8 x 1 x 6 x 1
B      (3d array):      7 x 1 x 5
Result (4d array):  8 x 7 x 6 x 5

A      (2d array):  5 x 4
B      (1d array):      1
Result (2d array):  5 x 4

A      (2d array):  15 x 3 x 5
B      (1d array):  15 x 1 x 5
Result (2d array):  15 x 3 x 5
 

ref:https://blog.youkuaiyun.com/lanchunhui/article/details/50158975 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值