146. LRU Cache

本文介绍了一种Least Recently Used (LRU) 缓存的设计与实现方法,使用Java的LinkedHashMap或Python的OrderedDict来高效地实现LRU缓存的基本操作get和set,并保持缓存中最近最少使用的项在超出容量时被移除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

 

 

http://blog.youkuaiyun.com/dazhi_100/article/details/44201051

http://gogole.iteye.com/blog/692103

可以用Java自带的LinkedHashMap,重写removeEldestEntry方法实现触发删除最不常用的条件,在构造器的第三个参数设置为true实现按照最不常用的方式排序

 

public class LRUCache {
    
	LinkedHashMap<Integer, Integer> map;
	int capacity;
	
    public CopyOfLRUCache(int capacity) {
    	
    	this.capacity = capacity;
    	
    	map = new LinkedHashMap<Integer, Integer>(256, 0.75f, true){
			private static final long serialVersionUID = 1L;
			@Override
			protected boolean removeEldestEntry(Entry<Integer, Integer> eldest) {
				return size() > CopyOfLRUCache.this.capacity;
			}
    	};
    }
    
    public int get(int key) {
        return map.containsKey(key) ? map.get(key) : -1;
    }
    
    public void set(int key, int value) {
        map.put(key, value);
    }
}

 

 

 

 

 

在网上看了一下,可以用HashMap + 双向链表 实现。在Discuss看到有个大神级的答案:

 

 

The problem can be solved with a hashtable that keeps track of the keys and its values in the double linked list. One interesting property about double linked list is that the node can remove itself without other reference. In addition, it takes constant time to add and remove nodes from the head or tail.

One particularity about the double linked list that I implemented is that I create a pseudo head and tail to mark the boundary, so that we don't need to check the NULL node during the update. This makes the code more concise and clean, and also it is good for the performance as well.

 

 

 

 

import java.util.HashMap;

class DLinkedNode {
	int key, value;
	DLinkedNode pre, post;
}

public class LRUCache {
	
	HashMap<Integer, DLinkedNode> cache = new HashMap<Integer, DLinkedNode>();
	int capacity;
	DLinkedNode head, tail;
	
    
	// Always add the new node right after head;
	private void addNode(DLinkedNode node) {
		node.pre = head;
		node.post = head.post;
		
		head.post.pre = node;
		head.post = node;
	}
	
	// Remove an existing node from the linked list.
	private void removeNode(DLinkedNode node) {
		DLinkedNode pre = node.pre;
		DLinkedNode post = node.post;
		
		pre.post = post;
		post.pre = pre;
	}
	
	// Move certain node in between to the head.
	private void moveToHead(DLinkedNode node) {
		this.removeNode(node);
		this.addNode(node);
	}
	
	// pop the current tail. 
	private DLinkedNode popTail() {
		DLinkedNode res = tail.pre;
		removeNode(res);
		return res;
	}
	
	
    public LRUCache(int capacity) {
    	
    	this.capacity = capacity;
    	
    	head = new DLinkedNode();
    	tail = new DLinkedNode();
    	
    	head.post = tail;
    	tail.pre = head;
    	
    	head.pre = null;
    	tail.post = null;
    }
    
    public int get(int key) {
        if(!cache.containsKey(key))	return -1;
        
        DLinkedNode node = cache.get(key);
        moveToHead(node);
        return node.value;
    }
    
    public void set(int key, int value) {
        if(cache.containsKey(key)) {
        	DLinkedNode target = cache.get(key);
        	target.value = value;
        	
        	moveToHead(target);
        	
        } else {
        	if(cache.size() == capacity) {
        		DLinkedNode tail = popTail();
        		cache.remove(tail.key);
        	}
        	
        	DLinkedNode newNode = new DLinkedNode();
        	newNode.key = key;
        	newNode.value = value;
        	cache.put(key, newNode);
        	
        	addNode(newNode);
        }
    }
}

 

 

 

 

 

 

用Python

1. OrderedDict应该内置了双端队列的实现

2. OrderedDict.popitem(last=True)

from collections import OrderedDict

class LRUCache(object):

    def __init__(self, capacity):
        """
        :type capacity: int
        """
        self.d = OrderedDict()
        self.capacity = capacity

    def get(self, key):
        """
        :type key: int
        :rtype: int
        """
        if key not in self.d: return -1
        val = self.d[key]
        del self.d[key]
        self.d[key]=val
        return val
        

    def put(self, key, value):
        """
        :type key: int
        :type value: int
        :rtype: void
        """
        if key in self.d: del self.d[key]
        if len(self.d)==self.capacity:
            self.d.popitem(False)
        self.d[key]=value
        
        


# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)

 

 

内容概要:本文详细探讨了基于MATLAB/SIMULINK的多载波无线通信系统仿真及性能分析,重点研究了以OFDM为代表的多载波技术。文章首先介绍了OFDM的基本原理和系统组成,随后通过仿真平台分析了不同调制方式的抗干扰性能、信道估计算法对系统性能的影响以及同步技术的实现与分析。文中提供了详细的MATLAB代码实现,涵盖OFDM系统的基本仿真、信道估计算法比较、同步算法实现和不同调制方式的性能比较。此外,还讨论了信道特征、OFDM关键技术、信道估计、同步技术和系统级仿真架构,并提出了未来的改进方向,如深度学习增强、混合波形设计和硬件加速方案。; 适合人群:具备无线通信基础知识,尤其是对OFDM技术有一定了解的研究人员和技术人员;从事无线通信系统设计与开发的工程师;高校通信工程专业的高年级本科生和研究生。; 使用场景及目标:①理解OFDM系统的工作原理及其在多径信道环境下的性能表现;②掌握MATLAB/SIMULINK在无线通信系统仿真中的应用;③评估不同调制方式、信道估计算法和同步算法的优劣;④为实际OFDM系统的设计和优化提供理论依据和技术支持。; 其他说明:本文不仅提供了详细的理论分析,还附带了大量的MATLAB代码示例,便于读者动手实践。建议读者在学习过程中结合代码进行调试和实验,以加深对OFDM技术的理解。此外,文中还涉及了一些最新的研究方向和技术趋势,如AI增强和毫米波通信,为读者提供了更广阔的视野。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值