动态规划------Backpack II

本文深入探讨了背包问题的优化算法,从传统的O(nxm)时间复杂度改进到O(m),并通过具体示例阐述了实现方法及关键步骤。重点在于如何在内存使用上进行优化,使解决方案更适用于资源受限的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given n items with size Ai and value Vi, and a backpack with size m. What’s the maximum value can you put into the backpack?

Have you met this question in a real interview? Yes
Example
Given 4 items with size [2, 3, 5, 7] and value [1, 5, 2, 4], and a backpack with size 10. The maximum value is 9.

Note
You cannot divide item into small pieces and the total size of items you choose should smaller or equal to m.

Challenge
O(n x m) memory is acceptable, can you do it in O(m) memory?

Tags Expand

public class Solution {
    /**
     * @param m: An integer m denotes the size of a backpack
     * @param A & V: Given n items with size A[i] and value V[i]
     * @return: The maximum value
     */
    public int backPackII(int m, int[] A, int V[]) {
        int[][] res = new int[A.length+1][m+1];
        res[0][0] = 0;
        for (int i=1; i<=A.length; i++) {
            for (int j=0; j<=m; j++) {
                if (j - A[i-1] < 0)
                    res[i][j] = res[i-1][j];
                if (j - A[i-1] >= 0) {
                    res[i][j] = Math.max(res[i-1][j], res[i-1][j-A[i-1]]+V[i-1]);
                }
            }
        }

        return res[A.length][m];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值