Ubuntu 配置 opencv , CodeBlocks 开发环境

转自:

主要:http://blog.youkuaiyun.com/cenziboy/article/details/7570139

参考:http://blog.youkuaiyun.com/yr119111/article/details/7666106

一、安装CodeBlocks(我用的是方法一)

方法一:直接在Ubuntu软件中心中找到CodeBlocks软件,直接安装;

方法二:命令行安装

# apt-getinstall codeblocks 
# apt-getinstall codeblocks-contrib     #wxWidgets 貌似要用 
# apt-get install libwxbase2.8-dev       # 还是 wxWidgets 的东东

二、安装opencv

1、  先查询opencv

~#apt-cache search opencv  #输入此行命令,下面为系统查询结果
libcv-dev- Translation package for libcv-dev 
libcv2.3- computer vision library - libcv* translation package 
libcvaux-dev- Translation package for libcvaux-dev 
libcvaux2.3- computer vision library - libcvaux translation package 
libhighgui-dev- Translation package for libhighgui-dev 
libhighgui2.3- computer vision library - libhighgui translation package 
libopencv-calib3d-dev- development files for libopencv-calib3d 
libopencv-calib3d2.3- computer vision Camera Calibration library 
libopencv-contrib-dev- development files for libopencv-contrib 
libopencv-contrib2.3- computer vision contrib library 
libopencv-core-dev- development files for libopencv-core 
libopencv-core2.3- computer vision core library 
libopencv-dev- development files for opencv 
libopencv-features2d-dev- development files for libopencv-features2d 
libopencv-features2d2.3- computer vision Feature Detection and Descriptor Extraction library 
libopencv-flann-dev- development files for libopencv-flann 
libopencv-flann2.3- computer vision Clustering and Search in Multi-Dimensional spaceslibrary 
libopencv-gpu-dev- development files for libopencv-gpu 
libopencv-gpu2.3- computer vision GPU Processing library 
libopencv-highgui-dev- development files for libopencv-highgui 
libopencv-highgui2.3- computer vision High-level GUI and Media I/O library 
libopencv-imgproc-dev- development files for libopencv-imgproc 
libopencv-imgproc2.3- computer vision Image Processing library 
libopencv-legacy-dev- development files for libopencv-legacy 
libopencv-legacy2.3- computer vision legacy library 
libopencv-ml-dev- development files for libopencv-ml 
libopencv-ml2.3- computer vision Machine Learning library 
libopencv-objdetect-dev- development files for libopencv-objdetect 
libopencv-objdetect2.3- computer vision Object Detection library 
libopencv-video-dev- development files for libopencv-video 
libopencv-video2.3- computer vision Video analysis library 
opencv-doc- OpenCV documentation and examples 
python-opencv - Python bindings forthe computer vision library

2、  根据查询结果安装

#1  输入命令
#  apt-get install libcv2.3 libcvaux2.3 libhighgui2.3 
 
#2  输入命令
#  apt-get install libcv-dev libcvaux-dev libhighgui-dev

三、codeblocks+opencv的配置

1  相关文件位置

输入命令~# pkg-config --cflags opencv  # opencv 头文件(.h) 位置
输出:-I/usr/include/opencv 
 
输入命令:~# pkg-config --libs opencv        # opencv 库文件
输出:-lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_ml-lopencv_video -lopencv_features2d -lopencv_calib3d -lopencv_objdetect-lopencv_contrib -lopencv_legacy -lopencv_flann

这样就装好了!

如果以上两步得不到对应结果则参考http://blog.youkuaiyun.com/yr119111/article/details/7666106中以下配置试试

======================================================

配置Linux.openCV参数设置

在/etc/ld.so.conf.d/opencv.conf文件中加入一行:/usr/local/lib ,
可能会没有opencv.conf这个文件,那我们就自己创建一个:
sudo gedit /etc/ld.so.conf.d/opencv.conf。
使用下面这条命令:
sudo ldconfig         
在 /etc/ bash.bashrc中加入:(sudo gedit /etc/bash.bashrc以root进入才能修改)
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH

======================================================

2 codeBlocks链接库配置: Project -> Build Options 如下图:(最好将所有关于opencv的so库文件都选中)


3 codeBlocks 头文件目录配置(pkg-config --cflags opencv   结果)


4 codeBlocks 路文件目录配置


5

测试代码:

#include"cv.h" 
#include"highgui.h" 
#include<iostream>
int main() 
{ 
    IplImage* pImg= cvLoadImage("/home/jh/CBWorkspace/Test1/mao.jpg",1); 
         if(pImg==NULL)
         {
                   std::cout << "Notfound Iamge!"<<std::endl;
                   return 0;
         }
    cvNamedWindow("Image", 1); 
    cvShowImage("Image", pImg); 
 
    cvWaitKey(0); 
 
    cvDestroyWindow("Image"); 
    cvReleaseImage(&pImg); 
 
    return 0; 
}
测试结果:



### Code::Blocks 20.04 教程和技术资料 Code::Blocks 是一款开源的跨平台集成开发环境 (IDE),支持多种编译器,包括 GCC 和 Clang。对于版本 20.04 的教程和文档,以下是相关内容: #### 官方资源 Code::Blocks 提供了一个详细的官方网站,其中包含了丰富的文档和支持信息。可以访问其官网获取最新版的用户手册以及常见问题解答[^1]。 #### 配置指南 为了更好地使用 Code::Blocks,在 Ubuntu 或其他 Linux 发行版上配置该 IDE 至关重要。通常情况下,可以通过包管理工具安装它: ```bash sudo apt update && sudo apt install codeblocks ``` 如果需要自定义插件或者特定功能,则可能需要手动调整设置。例如,指定编译器路径或链接库文件夹时可参考 Vulkan SDK 的头文件复制命令 `sudo cp -r $VULKAN_SDK/include/vulkan/ /usr/local/include/` 来理解如何操作系统目录结构。 #### CMake 支持 当涉及到复杂项目构建时,CMake 成为不可或缺的一部分。然而,在某些场景下可能会遇到依赖项缺失等问题,比如 OpenCV 构建过程中 IPPICV 下载失败的情况。此时建议按照官方指引利用图形界面程序如 **cmake-gui** 进行调试并解决相应错误提示[^2]。 #### GStreamer 示例工程 除了上述基础部分外,还有更多高级应用领域值得探索。例如多媒体框架GStreamer提供了详尽的手册来指导开发者完成从简单播放到流媒体传输等一系列任务;同时也有专门针对 Meson 构建系统的介绍帮助快速入门现代软件工程项目搭建流程[^3]。 ```c++ // A minimal example of using the wxWidgets library within a Code::Blocks project. #include <wx/wx.h> class MyApp : public wxApp { public: virtual bool OnInit(); }; IMPLEMENT_APP(MyApp) bool MyApp::OnInit() { wxString message = wxT("Welcome to Code::Blocks!"); wxMessageBox(message, wxT("Hello"), wxOK | wxICON_INFORMATION); return true; } ``` 以上代码片段展示了如何在一个基于 wxWidgets 库的新应用程序中初始化消息框显示欢迎语句的功能实现方法。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值