spark - Pair RDD (Key/Value Pairs)

本文详细介绍了Spark中PairRDD的各种转换操作及其应用场景,包括reduceByKey、groupByKey、mapValues等,并对比了不同操作的特点及适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

- Create Pair RDD

  • from regular RDD by calling map function.
val pairs = lines.map(x => (x.split(" ")(0), x))


  • transformation on Pair RDD (data: {(1,2),(3,4),(3,6)})
  1. reduceByKey => {(1,2), (3,10)}
  2. groupByKey => {(1,[2]), (3, [4, 6])}
  3. mapValues => {(1,3), (3,5), (3,7)} //x => x+1
  4. flatMapValues => {(1,2), (1,3), (1,4), (1,5) (3,4),(3,5)} // x => (x to 5)
  5. keys => {1,3,3}
  6. values => {2,4,6}
  7. sortByKey => 
  8. combineByKey(creater for each key, accumulator for each partition, merger of acc from different partition)

  • transformation on two pair RDDs (rdd={(1,2),(3,4),(3,6)}, other={(3,9)})
  1. subtractByKey => {(1,2)}
  2. join => {(3, (4,9)), (3, (6,9))}
  3. rightOuterJoin => {(3,(Some(4),9)), (3,(Some(6),9))}
  4. leftOuterJoin => {(1,(2,None)),(3,(4,Some(9))),(3,(6,Some(9)))}
  5. cogroup => {(1,([2],[])),(3,([4, 6],[9]))}
  • actions on pair RDDs (countByKey, collectAsMap, lookup)
  • Partition 
  1. partition before transformation or action (be beneficial when partitions will be used multiple times). the partitioned RDD needs to be persisted after partitionBy method. Otherwise, reevaluation is needed each time the RDD is re-used.
  2. partition info is kept for these operations, cogroup(), groupWith(), join(), leftOuterJoin(), rightOuterJoin(),
    groupByKey(), reduceByKey(), combineByKey(), partitionBy(), sort(), mapValues()
    (if the parent RDD has a partitioner), flatMapValues() (if parent has a partitioner), and
    filter() (if parent has a partitioner).
  3. for binary operations, partitioner is default partitioner (HashPartitioner), one of its parent's partitioner (caller win)
  4. custom partitioner to extend Partitioner (note: hashcode could be negative. but partition needs to be positive)

numPartitions: Int

getPartition(key: Any): Int,

equals()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值