TASK

博客记录了Java学习任务安排,包括总结TIJ一到五章内容、加深基础知识理解,后续计划完成前6章学习,把握基本概念。还提到MIZMAZE游戏修改总结报告待定,以及对J2ME、JAVA、UNIJA课题的学习,需理解掌握相关概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天任务:

TIJ总结一到五章的内容。

加深基础知识的了解。

MIZMAZE游戏修改总结报告。(待定)

3.3总结:现在看书效率不高。。就是说看JAVA很容易分心。堆概念的理解把握上做的不好。明天TIJ第6章。结束前6章。对基本的概念都要把握好。星期6一天满了。星期7的话在做安排。如果有时间可以看第7章。

3.4今天任务一定要完成。好好的理解。

心态不能出现烦躁,一定要平和。

J2ME/JAVA/UNIJA  三大课题

理解和掌握一张。看书和例子比较重要。

加深概念的理解                  3.7

第8章INNER CLASS & INTERFACE概念比较抽象化。不容易理解。好好琢磨。今天可以先在好好看看前7章。3.8

void go_to_xy(float target_x, float target_y) 的函数发现执行时,只执行了第一阶段。考虑运用switch函数解决,可以使用别的方法#include <math.h> // 添加数学库用于fabs函数 #include "board.h" #include "my_key.h" #include "my_time.h" #include "ti_msp_dl_config.h" #include "oled.h" #define _USE_MATH_DEFINES #define WHEEL_BASE 80.0f #ifndef M_PI #define M_PI 3.14159265358979323846 #endif void BUZZY_OFF(void) { DL_GPIO_setPins(BUZZY_PORT, BUZZY_PIN_PIN); } void BUZZY_ON(void) { DL_GPIO_clearPins(BUZZY_PORT, BUZZY_PIN_PIN); } void refresh_oled(void); void key(void); void go_straight(int dis); void go_arc_ccd(hsu_time_t); void go_brc_ccd(hsu_time_t); void turn_90_degrees(int direction); void turn_in_place(float angle); void go_to_xy(float target_x, float target_y); void sound_light_alert(void); void show_task_now(void); u8 Car_Mode = Diff_Car; int Motor_Left, Motor_Right; // 电机PWM变量 应是Motor的 u8 PID_Send; // 延时和调参相关变量 float RC_Velocity = 200, RC_Turn_Velocity, Move_X, Move_Y, Move_Z, PS2_ON_Flag; // 遥控控制的速度 float Velocity_Left, Velocity_Right; // 车轮速度(mm/s) u16 test_num, show_cnt; float Voltage = 0; extern float Yaw; // 声明外部YAW角度变量 int64_t left_encoder = 0, right_encoder = 0; void SysTick_Handler(void) { hsu_time_systick_handler(); } typedef enum { BEGIN, T1, T2, T3, T4 } TaskState; typedef enum { STOP, GO_STRAIGHT, GO_CCD, TURN_IN_PLACE, TURN_90_DEGREES, WAIT_ALERT } DoingWhat; typedef struct __TASK_NAMESPACE { uint8_t is; uint8_t is_running; uint8_t finish; uint8_t sub_finish; uint8_t running_state; // 0: 停止, 1: 运行中 TaskState state; DoingWhat doing_what; float target; float vx; float vz; // 用于复杂任务 uint8_t sub_task_stage; // 子任务阶段 uint8_t lap_count; // 圈数计数 int64_t start_encoder; // 起始编码器值 uint32_t alert_start_time; // 声光提示开始时间 float start_yaw; // 起始YAW角度 float target_yaw_diff; // 目标YAW角度差 hsu_time_t ccd_end_time; float target_x; // 目标X坐标 (毫米) float target_y; // 目标Y坐标 (毫米) float current_x; // 当前X坐标 (毫米) float current_y; // 当前Y坐标 (毫米) int64_t rotation_start_left; // 旋转开始时左轮编码器值 int64_t rotation_start_right; // 旋转开始时右轮编码器值 float target_rotation; // 目标旋转量(弧度) } TaskNamespace; void reset_task_namespace(TaskNamespace *t) { t->is_running = 0; t->finish = 0; t->sub_finish = 0; t->state = BEGIN; t->doing_what = STOP; t->vx = 0; t->vz = 0; t->sub_task_stage = 0; t->lap_count = 0; t->start_encoder = left_encoder; t->alert_start_time = 0; t->start_yaw = 0; t->target_yaw_diff = 0; t->running_state = 0; // 明确重置运行状态为0 t->ccd_end_time = 0; t->is = 0; // 初始化坐标 t->target_x = 0.0f; t->target_y = 0.0f; t->current_x = 0.0f; t->current_y = 0.0f; t->rotation_start_left = 0; t->rotation_start_right = 0; t->target_rotation = 0.0f; } void next_state(TaskNamespace *t) { TaskState last_state = t->state; reset_task_namespace(t); if (last_state < T4) { t->state = last_state + 1; } } TaskNamespace task_namespace; void show_task_now(void) { //OLED_ShowString(0, 0, "Task Now:"); switch (task_namespace.state) { case BEGIN: OLED_ShowString(1, 10,"0"); break; case T1: OLED_ShowString(1, 10,"1"); break; case T2: OLED_ShowString(1, 10,"2"); break; case T3: OLED_ShowString(1, 10,"3"); break; case T4: OLED_ShowString(1, 10,"4"); break; default: break; } } void main_task(void); int main(void) { // 系统初始化 SYSCFG_DL_init(); // 初始化系统配置 hsu_time_init(); // 时间 // 清除所有外设的中断挂起状态 NVIC_ClearPendingIRQ(ENCODERA_INT_IRQN); // 编码器A中断 NVIC_ClearPendingIRQ(ENCODERB_INT_IRQN); // 编码器B中断 NVIC_ClearPendingIRQ(UART_0_INST_INT_IRQN); // UART0串口中断 // 使能各外设的中断 NVIC_EnableIRQ(ENCODERA_INT_IRQN); // 开启编码器A中断 NVIC_EnableIRQ(ENCODERB_INT_IRQN); // 开启编码器B中断 NVIC_EnableIRQ(UART_0_INST_INT_IRQN); // 开启UART0中断 reset_task_namespace(&task_namespace); task_namespace.state = BEGIN; // 明确设置初始状态 // 定时器和ADC相关中断配置 NVIC_ClearPendingIRQ(TIMER_0_INST_INT_IRQN); // 清除定时器0中断挂起 NVIC_EnableIRQ(TIMER_0_INST_INT_IRQN); // 开启定时器0中断 NVIC_EnableIRQ(ADC12_VOLTAGE_INST_INT_IRQN); NVIC_EnableIRQ(ADC12_CCD_INST_INT_IRQN); OLED_Init(); // 初始化OLED显示屏 OLED_ShowString(1, 1, "Task Now:"); OLED_ShowString(2, 1, "state:"); OLED_ShowString(3, 1, "yaw:"); OLED_ShowString(4, 1, "x:"); OLED_ShowString(4, 6, "y:"); //MPU6050_initialize(); //DMP_Init(); BUZZY_ON(); // 主循环 // printf("Test delay 500us\n"); // hsu_time_delay_us(500); // printf("Test delay 500us end\n"); uint8_t main_task_timer = hsu_time_timer_create(10, true, main_task); hsu_time_timer_start(main_task_timer); uint8_t refresh_oled_timer = hsu_time_timer_create(5, true, refresh_oled); hsu_time_timer_start(refresh_oled_timer); uint8_t key_timer = hsu_time_timer_create(2, true, key); hsu_time_timer_start(key_timer); while (1) { hsu_time_timer_process(); RD_TSL(); // 读取CCD数据 Find_CCD_Median(); // 计算CCD数据中值 Read_DMP(); show_task_now(); //DL_GPIO_togglePins(LED_PORT, LED_led_PIN); // printf("L=%lld R=%lld YAW=%.1f\n", left_encoder, right_encoder, Yaw); } } void task_no(void); void task_1(void); void task_2(void); void task_3(void); void task_4(void); void main_task(void) { if (!(task_namespace.is)) return; printf("main task\n"); switch (task_namespace.state) { case BEGIN: task_no(); break; case T1: task_1(); break; case T2: task_2(); break; case T3: task_3(); break; case T4: task_4(); break; default: break; } switch (task_namespace.doing_what) { case STOP: Get_Target_Encoder(0, 0); break; case GO_STRAIGHT: if ((left_encoder * 1.f) < task_namespace.target) { Get_Target_Encoder(0.6, 0); // 提高速度到600mm/s } else { Get_Target_Encoder(0, 0); task_namespace.doing_what = STOP; task_namespace.finish = 1; } break; case GO_CCD: if (task_namespace.ccd_end_time < hsu_time_get_ms()) { Get_Target_Encoder(0, 0); task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { CCD_Mode(); } break; case TURN_IN_PLACE: // 原地转向控制 if (task_namespace.target_yaw_diff != 0) { float current_yaw_diff = Yaw - task_namespace.start_yaw; // 处理角度跨越±180度的情况 if (current_yaw_diff > 180) { current_yaw_diff -= 360; } else if (current_yaw_diff < -180) { current_yaw_diff += 360; } printf("Turn: Start=%.1f Current=%.1f Diff=%.1f Target=%.1f\n", task_namespace.start_yaw, Yaw, current_yaw_diff, task_namespace.target_yaw_diff); // 检查是否达到目标角度 if ((task_namespace.target_yaw_diff > 0 && current_yaw_diff >= task_namespace.target_yaw_diff) || (task_namespace.target_yaw_diff < 0 && current_yaw_diff <= task_namespace.target_yaw_diff)) { Get_Target_Encoder(0, 0); // 停止转向 task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { // 继续转向 float turn_speed = (task_namespace.target_yaw_diff > 0) ? 0.1 : -0.1; Get_Target_Encoder(0, turn_speed); } } break; case TURN_90_DEGREES: { // 计算当前旋转角度(使用编码器差值) float rotation = (left_encoder - task_namespace.rotation_start_left - (right_encoder - task_namespace.rotation_start_right)) * M_PI / (2 * WHEEL_BASE); // 检查是否达到目标角度(允许±0.1弧度误差) if (fabs(rotation - task_namespace.target_rotation) < 0.1f) { Get_Target_Encoder(0, 0); // 停止旋转 task_namespace.doing_what = STOP; task_namespace.finish = 1; } else { // 控制旋转速度(根据方向调整) float turn_speed = (task_namespace.target_rotation > 0) ? 0.1f : -0.1f; Get_Target_Encoder(-turn_speed, turn_speed); // 左右轮反向运动 } break; } case WAIT_ALERT: Get_Target_Encoder(0, 0); // 停车 if (hsu_time_get_ms() - task_namespace.alert_start_time > 1000) { // 声光提示1秒 task_namespace.doing_what = STOP; task_namespace.finish = 1; } break; default: break; } } void task_no(void) { return; } // 任务1:A点到B点直线行驶 void task_1(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: // 开始第一阶段:A到B go_straight(3300); break; case 1: // 完成亮灯 DL_GPIO_togglePins(LED_PORT, LED_led_PIN); break; case 2: //任务结束 reset_task_namespace(&task_namespace); task_namespace.running_state = 0; // 重置为停止状态 break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务2:X Y坐标行驶 void task_2(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: // 运动到XY坐标 go_to_xy(3000.0f, 3000.0f); break; case 1: // 完成灯亮 DL_GPIO_togglePins(LED_PORT, LED_led_PIN); break; case 2: // 任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务3:A->C->B->D->A循环 void task_3(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: turn_in_place(-31.0f); break; case 1: go_straight(4060); break; case 2: turn_in_place(30.0f); break; case 3: // 开始C到B弧线 sound_light_alert(); //go_straight(40); go_brc_ccd(3550); break; case 4: turn_in_place(36.0f); break; case 5: sound_light_alert(); go_straight(3985); break; case 6: turn_in_place(-40.0f); break; case 7: // 开始C到B弧线 sound_light_alert(); go_arc_ccd(3600); break; case 8: // D到A弧线完成,任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } return; } // 任务4:重复任务3路径4圈 void task_4(void) { if (!task_namespace.is_running) { task_namespace.is_running = 1; task_namespace.sub_task_stage = 0; task_namespace.finish = 1; return; } if (task_namespace.finish) { switch (task_namespace.sub_task_stage) { case 0: turn_in_place(-30.0f); break; case 1: go_straight(4045); break; case 2: turn_in_place(29.0f); break; case 3: // 开始C到B弧线 sound_light_alert(); //go_straight(40); go_brc_ccd(5000); break; case 4: turn_in_place(34.0f); break; case 5: sound_light_alert(); go_straight(4035); break; case 6: turn_in_place(-33.0f); break; case 7: // 开始C到B弧线 sound_light_alert(); go_arc_ccd(5000); break; case 8: // D到A弧线完成,任务结束 sound_light_alert(); reset_task_namespace(&task_namespace); break; } task_namespace.finish = 0; task_namespace.sub_task_stage++; } } void TIMER_0_INST_IRQHandler(void) { if (DL_TimerA_getPendingInterrupt(TIMER_0_INST)) { if (DL_TIMER_IIDX_ZERO) { Get_Velocity_From_Encoder(Get_Encoder_countA, Get_Encoder_countB); Get_Encoder_countA = Get_Encoder_countB = 0; MotorA.Motor_Pwm = Incremental_PI_Left(MotorA.Current_Encoder, MotorA.Target_Encoder); MotorB.Motor_Pwm = Incremental_PI_Right(MotorB.Current_Encoder, MotorB.Target_Encoder); if (!Flag_Stop) { Set_PWM(-MotorA.Motor_Pwm, -MotorB.Motor_Pwm); } else { Set_PWM(0, 0); } } } } uint32_t gpio_interrup1, gpio_interrup2; int64_t B1, B2, B3, B4; int64_t A1, A2, A3, A4; void GROUP1_IRQHandler(void) { // 获取中断信号 gpio_interrup1 = DL_GPIO_getEnabledInterruptStatus(ENCODERA_PORT, ENCODERA_E1A_PIN | ENCODERA_E1B_PIN); gpio_interrup2 = DL_GPIO_getEnabledInterruptStatus(ENCODERB_PORT, ENCODERB_E2A_PIN | ENCODERB_E2B_PIN); // encoderB if ((gpio_interrup1 & ENCODERA_E1A_PIN) == ENCODERA_E1A_PIN) { if (!DL_GPIO_readPins(ENCODERA_PORT, ENCODERA_E1B_PIN)) { right_encoder--; Get_Encoder_countB--; } else { right_encoder++; Get_Encoder_countB++; } } else if ((gpio_interrup1 & ENCODERA_E1B_PIN) == ENCODERA_E1B_PIN) { if (!DL_GPIO_readPins(ENCODERA_PORT, ENCODERA_E1A_PIN)) { right_encoder++; Get_Encoder_countB++; } else { right_encoder--; Get_Encoder_countB--; } } // encoderA if ((gpio_interrup2 & ENCODERB_E2A_PIN) == ENCODERB_E2A_PIN) { if (!DL_GPIO_readPins(ENCODERB_PORT, ENCODERB_E2B_PIN)) { left_encoder++; Get_Encoder_countA--; } else { left_encoder--; Get_Encoder_countA++; } } else if ((gpio_interrup2 & ENCODERB_E2B_PIN) == ENCODERB_E2B_PIN) { if (!DL_GPIO_readPins(ENCODERB_PORT, ENCODERB_E2A_PIN)) { left_encoder--; Get_Encoder_countA++; } else { left_encoder++; Get_Encoder_countA--; } } DL_GPIO_clearInterruptStatus(ENCODERA_PORT, ENCODERA_E1A_PIN | ENCODERA_E1B_PIN); DL_GPIO_clearInterruptStatus(ENCODERB_PORT, ENCODERB_E2A_PIN | ENCODERB_E2B_PIN); } // 直线行驶函数 void go_straight(int dis) { task_namespace.doing_what = GO_STRAIGHT; task_namespace.target = left_encoder + dis; task_namespace.finish = 0; } // 原地转向函数 void turn_in_place(float angle) { task_namespace.doing_what = TURN_IN_PLACE; task_namespace.start_yaw = Yaw; task_namespace.target_yaw_diff = angle; // 正值右转,负值左转 task_namespace.finish = 0; } // CCD巡线函数(需要外部条件结束) void go_ccd_line(void) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = left_encoder; task_namespace.finish = 0; // 设置一个安全的最大距离,防止无限巡线 // 可以根据实际场地调整这个值 static uint32_t ccd_end_time = 0; if (ccd_end_time == 0) { ccd_end_time = hsu_time_get_ms(); } // 如果巡线时间超过10秒或距离超过2000mm,强制结束 if (hsu_time_get_ms() - ccd_end_time > 10000 || (left_encoder * 1.f - task_namespace.start_encoder) > 2000) { task_namespace.finish = 1; ccd_end_time = 0; } } // 弧线CCD巡线函数 void go_arc_ccd(hsu_time_t time) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = left_encoder; task_namespace.ccd_end_time = hsu_time_get_ms() + time; } void go_brc_ccd(hsu_time_t time) { task_namespace.doing_what = GO_CCD; task_namespace.start_encoder = right_encoder; task_namespace.ccd_end_time = hsu_time_get_ms() + time; } // 旋转90度函数 /*void turn_90_degrees(int direction) { // direction: 1为顺时针,-1为逆时针 turn_in_place(90.0f * direction); }*/ // 运动到指定坐标函数 void go_to_xy(float target_x, float target_y) { task_namespace.sub_task_stage = 0; // 重置子任务阶段 // 第一阶段:运动到X坐标 float x_distance = target_x - task_namespace.current_x; go_straight((int)fabs(x_distance)); // 使用绝对值距离 // 新当前坐标 task_namespace.current_x = target_x; // 第二阶段:旋转90度(方向根据Y坐标位置决定) int direction = (target_y > task_namespace.current_y) ? 1 : -1; turn_90_degrees(direction); // 第三阶段:运动到Y坐标 float y_distance = target_y - task_namespace.current_y; go_straight((int)fabs(y_distance)); // 使用绝对值距离 // 新当前坐标 task_namespace.current_y = target_y; } // 旋转90度函数(使用编码器计算) void turn_90_degrees(int direction) { // 保存旋转开始时的编码器值 task_namespace.rotation_start_left = left_encoder; task_namespace.rotation_start_right = right_encoder; // 计算目标旋转量(90度 = π/2 弧度) // 假设轮距为120mm(根据实际小车尺寸调整) #define WHEEL_BASE 80.0f task_namespace.target_rotation = (direction > 0) ? (M_PI/2) : (-M_PI/2); // 设置状态为旋转 task_namespace.doing_what = TURN_90_DEGREES; task_namespace.finish = 0; } // 声光提示函数 void sound_light_alert(void) { DL_GPIO_togglePins(LED_PORT, LED_led_PIN); DL_GPIO_setPins(BUZZY_PORT, BUZZY_PIN_PIN); uint32_t start_time = hsu_time_get_ms(); while (hsu_time_get_ms() - start_time < 1000) { // 空循环等待1秒 } //hsu_time_delay_ms(200); DL_GPIO_togglePins(LED_PORT, LED_led_PIN); DL_GPIO_clearPins(BUZZY_PORT, BUZZY_PIN_PIN); } // callback void refresh_oled(void) { show_task_now(); OLED_ShowString(2, 1, "state:"); if (task_namespace.running_state) { OLED_ShowString(2, 7, "1"); // 运行中 } else { OLED_ShowString(2, 7, "0"); // 停止 } } uint32_t key_get_tick_ms(void) { return hsu_time_get_ms(); } void key(void) { key_event_t event = key_scan(); //uint8_t key_value = key_read_pin(); // 获取按键状态 //S1 switch (event) { case KEY_EVENT_SINGLE_CLICK: next_state(&task_namespace); break; case KEY_EVENT_DOUBLE_CLICK: task_namespace.is = 1; task_namespace.running_state = 1; task_namespace.is_running = 0; // 重置任务运行标志 break; } }
最新发布
07-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值