从贝叶斯角度深入理解正则化

本文深入探讨正则化的目的——防止过拟合,以及其实质是对参数的约束。从贝叶斯角度出发,解释了L2正则与高斯分布、L1正则与拉普拉斯分布的关系,揭示了正则化项如何等价于参数的先验概率分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、正则化

一般来说,监督学习可以看做最小化下面的目标函数:


其中,第一项L(yi,f(xi;w)) 衡量我们的模型(分类或者回归)对第i个样本的预测值f(xi;w)和真实的标签yi之前的误差。因为我们的模型是要拟合我们的训练样本的嘛,所以我们要求这一项最小,也就是要求我们的模型尽量的拟合我们的训练数据。但正如上面说言,我们不仅要保证训练误差最小,我们更希望我们的模型测试误差小,所以我们需要加上第二项,也就是对参数w的规则化函数Ω(w)去约束我们的模型尽量的简单。其中这个规则化函数就是我们常见的L0,L1,L2范数。

     模式识别理论中,常提到的正则化到底是干什么的?渐渐地,听到的多了,看到的多了,再加上平时做东西都会或多或少的接触,有了一些新的理解。

1. 正则化的目的:防止过拟合!

2. 正则化的本质:约束(限制)要优化的参数。

二、贝叶斯理论

        贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。 贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。

贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:
1. 已知类条件概率密度参数表达式和先验概率
2. 利用贝叶斯公式转换成后验概率
3. 根据后验概率大小进行决策分类

设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。

对于任一事件x,P(x)>0,如图



贝叶斯正则化分位数回归结合非对称拉普拉斯分布在处理具有非对称误差分布的数据时表现出显著的优越性,这主要是因为非对称拉普拉斯分布在建模误差时提供了更为灵活的尾部行为,特别适用于数据的异常值处理和稀疏数据分析。从贝叶斯角度出发,通过引入先验分布,结合非对称拉普拉斯分布的误差项,贝叶斯正则化分位数回归方法能够在不确定性和先验信息的基础上对模型参数进行估计和推断。这种方法通过吉布斯采样算法对复杂的后验分布进行抽样,从而实现对参数的有效估计。在模型中加入正则化项,如L1惩罚项,可以实现变量选择,从而得到更加稀疏和解释性强的模型。此外,贝叶斯框架允许我们直接对分位数进行建模,这意味着它可以在所有分位数水平上提供一致的预测性能。通过这种结合,我们能够得到既适应复杂数据结构,又能有效处理异常值的统计模型,这在预测性能和参数估计的稳定性方面都显示出了显著优势。具体来说,可以参考《基于非对称拉普拉斯的贝叶斯正则化分位数回归:优越性与应用比较》来深入理解这一方法,并掌握如何在实际项目中应用它。 参考资源链接:[基于非对称拉普拉斯的贝叶斯正则化分位数回归:优越性与应用比较](https://wenku.youkuaiyun.com/doc/4kkqhe37wu?spm=1055.2569.3001.10343)
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值